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a b s t r a c t

The lattice Boltzmann method (LBM) is applied to calculate the dynamic permeability KðxÞ of porous
media; an oscillating macroscopic pressure gradient is imposed in order to generate oscillating flows.
The LBM simulation yields the time dependent seepage velocity of amplitude A and phase shift B which
are used to calculate KðxÞ. The procedure is validated for plane Poiseuille flows where excellent agree-
ment with the analytical solution is obtained. The limitations of the method are discussed. When the ratio
between the kinematic viscosity and the characteristic size of the pores is high, the corresponding Knud-
sen number Kn is high and the numerical values of KðxÞ are incorrect with a positive imaginary part; it is
only when Kn is small enough that correct values are obtained. The influence of the time discretization of
the oscillating body force is studied; simulation results are influenced by an insufficient discretization,
i.e., it is necessary to avoid using too high frequencies. The influence of absolute errors in the seepage
velocity amplitude dA and the phase shift dB on KðxÞ shows that for high x even small errors in B can
cause drastic errors in Re KðxÞ½ �. The dynamic permeability of reconstructed and real (sandstone) porous
media is calculated for a large range of frequencies and the universal scaling behavior is verified. Very
good correspondences with the theoretical predictions are observed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Oscillating flows through porous media are of great interest in
various areas of Physics and Engineering. Propagation of acoustic
waves in porous media saturated by one or two immiscible fluids
corresponds to very important applications such as seismic inves-
tigations in oil fields. Oscillating flows were considered by Biot
[1,2] in order to study low- and high-frequency acoustic waves
propagating through saturated porous media. Various types of
waves propagating through the medium depending on the fre-
quencies are predicted by this theory. Acoustic waves in statisti-
cally homogeneous saturated porous media can be also described
by the homogenisation theory [3,4]; first, some local problems de-
fined on the unit cell are solved; then, the corresponding solutions
are averaged over the unit cell; finally, a generalised form of the
Christoffel equation (see [5] for details) where these averages are
present, is solved in order to obtain the acoustic velocities. To
the best of our knowledge, these problems were not addressed
by the method of spatial averaging devised by Whitaker [6].

In both cases, oscillatory flows in porous medium are character-
ized by the dynamic permeability KðxÞ which is used to derive the
acoustic properties of the medium; KðxÞ is a complex number
whose real and imaginary parts depend on the frequency x. This
concept of dynamic permeability is of interest mostly for liquids

which have a significant inertia. In [7], the relationship between
KðxÞ and the geometry of the medium was studied for high and
low frequencies and the length scale K characterising the dynam-
ically connected pore size was introduced. The scaling behavior of
KðxÞ was studied in [8,9]; KðxÞ can be considered as a scaling
function with only two parameters; moreover, if the pore cross
sectional area varies slowly, a universal behavior is observed which
is independent of the porous medium. This scaling behavior was
confirmed by numerical simulations [8] as well as experimental
studies [9,10]. The influence of pore roughness on dynamic perme-
ability was investigated in [11]. The symmetry of the dynamic vis-
cous permeability tensor for spatially periodic structures was
studied in [12].

Dynamic permeability was addressed for Non Newtonian fluids
by Whitaker in a series of papers [13–15]. In addition, a stochastic
theory was devised for poroelastic media by [16].

In order to determine KðxÞ for Newtonian fluids, numerical
calculations must be performed since analytical calculations are
possible only for very simple geometries such as the Poiseuille flow
[2]. The finite element method is used in [8] while the boundary
element method is used in [17]. Cellular automata are applied to
calculate KðxÞ in [18]. Simulations of oscillating flows through
samples of asphalt pavements and calculations of dynamic perme-
ability by lattice Boltzmann method (LBM) can be found in [19,20].

In the present work, LBM is applied to simulate oscillating flows
through spatially periodic porous media. This paper is organized as
follows. In Section 2, the theoretical problem is described; a
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reconstruction procedure to generate spatially periodic porous
media is recalled. In Section 3, the lattice Boltzmann model as well
as the procedure to calculate the dynamic permeability are pre-
sented; the methodology is similar to the one used in [19,20].
The procedure is validated for Poiseuille flows. Then, the influence
of the Knudsen number and of the oscillation frequency on the re-
sults is discussed; the role of the Knudsen number is carefully
studied since no prior study of such influence could be found in
the literature. In Section 4, the procedure is applied to calculate
the dynamic permeability of reconstructed and real porous media.
Some concluding remarks end this paper in Section 5.

2. General

2.1. Oscillating flows in porous media

In this section, the theoretical problem is described. The liquid
is supposed to be Newtonian and obeys the incompressible Na-
vier–Stokes equation

q
Dv
Dt
¼ qF�rpþ lr2v; ð1aÞ

r � v ¼ 0; ð1bÞ

where q is the fluid density, v the fluid velocity, F the body force, p
the pressure, and l the viscosity. The no slip boundary condition
applies at the fluid–solid interface

v ¼ 0: ð2Þ

The force qF which is equivalent to a macroscopic pressure gradient
rp, is assumed to be harmonic

F ¼ F̂eixt ; ð3Þ

where x is the wave frequency. As a direct consequence, the veloc-
ity and pressure fields are supposed to be of the form

v ¼ v̂ðrÞeixt ; p ¼ p̂ðrÞeixt ; ð4Þ

where r is the position vector. Then, the Navier–Stokes equation can
be rewritten in the linearized form

ixqv̂ ¼ qF̂�rp̂þ lr2v̂; ð5aÞ

r � v̂ ¼ 0: ð5bÞ

When solved, this equation yields the local fluid velocity and the
pressure. The macroscopic properties characterizing the oscillatory
flow can be written as a dynamic Darcy law

hv̂i ¼ KðxÞ
l
� qF̂; ð6Þ

where the brackets hi denote the volume average

h�i ¼ 1
X

Z
X
�dX; ð7Þ

where X is the volume of the domain. The dynamic permeability
tensor KðxÞ is a complex valued tensor which depends on x. For
isotropic media, KðxÞ is spherical and equal to KðxÞI where I is
the unit tensor and KðxÞ a complex number

KðxÞ ¼ KrðxÞ þ iKiðxÞ ¼ jKðxÞjei arctanðKi
Kr
Þ ð8Þ

when x is zero, the imaginary part vanishes, and the usual perme-
ability defined by the static Darcy law is obtained.

2.2. Porous media

2.2.1. Plane Poiseuille flow
The simplest configuration for the dynamic permeability calcu-

lation which can be considered as a primitive model of a porous
medium is a two-dimensional plane channel. A fluid oscillates in
the channel limited by the solid planes y ¼ 0 and h because of an
oscillating body force Fx along the x-axis. The dynamic permeabil-
ity can be calculated analytically [2]. The velocity profile v f along
the y-axis is provided by the equation

@tv f ¼ Fx þ m@2
y2 v f ; ð9Þ

which can be rewritten in the linearized form

ixv̂ f ¼ F̂x þ m@2
y2 v̂ f ; ð10aÞ

with the boundary conditions

v̂ f ð0Þ ¼ 0; v̂ f ðhÞ ¼ 0: ð10bÞ

Then, the solution is given by

v̂ f ðyÞ ¼
iF̂x

x
�1þ

cosh
ffiffiffiffi
ix
m

q
h�2y

2

� �
cosh

ffiffiffiffi
iw
m

q
h
2

� �
2
64

3
75: ð11Þ

The average velocity can be found by integration across the channel

hv̂ f i ¼
1
h

Z h

0
v̂ f ðyÞdy ¼ F̂x

x2 �ixþ 2
ffiffiffiffiffiffiffiffiffi
ixm
p

h
tanh

ffiffiffiffiffiffi
iw
m

r
h
2

 !" #
: ð12Þ

The dynamic permeability is deduced from the Darcy law (6)

K ¼ m
x2 �ixþ 2

ffiffiffiffiffiffiffiffiffi
ixm
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h
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 !" #
ð13Þ

It is easy to verify that the usual value of permeability is obtained
when x tends to zero

lim
x!0

KðxÞ ¼ h2

12
: ð14Þ

2.2.2. Reconstructed porous media
More sophisticated porous media can be simulated. Spatially

periodic reconstructed porous media can be generated by the
reconstruction procedure described in [21]. The unit cell is com-
posed of Nc elementary cubes of size a along each direction of
space. The structure of the medium is described by a phase func-
tion ZðxÞ which is equal to 1 if the point x belongs to the void,
and 0 if the point belongs to the solid. The function is characterized
by a porosity e and a correlation function RZðuÞ

e ¼ ZðxÞ; RzðuÞ ¼
½ZðxÞ � e�½Zðxþ uÞ � e�

e� e2 : ð15Þ

RzðuÞ only depends on the norm u of the translation vector u when
the medium is isotropic. ZðxÞ is obtained by thresholding standard
Gaussian variables Y correlated by

RY ðuÞ ¼ e
�u2

l2c ; ð16Þ

where lc is the correlation length. Therefore, the input parameters
for the reconstruction algorithm are the unit cell size Nc , the poros-
ity e and the correlation length lc .

3. Lattice Boltzmann method

The Navier–Stokes equation can be numerically solved by the
lattice Boltzmann method (LBM) which is widely used to solve
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