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a b s t r a c t

The geometric theorems reported by Quintard and Whitaker [5, Appendix B] are re-examined. We show
(1) The geometrical theorems can be interpreted in terms of the raw spatial moments of the pore struc-
ture within the averaging volume. (2) For the case where the first spatial moment is aligned with the cen-
ter of mass of the averaging volume, the geometric theorems can be expressed in terms of the central
moments of the porous medium. (3) When the spatial moments of the pore structure are spatially sta-
tionary, the geometrical theorems allow substantial simplification of nonlocal terms arising in the aver-
aged equations. (4) In the context of volume averaging, the geometric theorems of Quintard and Whitaker
[5, Appendix B] are better interpreted as statements regarding the spatial stationarity of specific volume
averaged quantities rather than an explicit statement about the media disorder.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In an early paper, Richard Feynman wrote about his interest in
using multiple approaches to explain physics by stating [1].

It is felt, in the face of daily experimental surprises for meson
theory, that it might be worth while to spend one’s time
expressing electrodynamics in every physical and mathematical
way possible. . .This is one reason that this paper is published,
even though it is little more than a mathematical re-expression
of old material. A second reason is the desire to describe a
mathematical method which may be useful in other fields.

As Feynman recognized, the re-investigation of results by using
multiple methods has tremendous pedagogical value. Throughout
his career as a scientist, Steve Whitaker has applied similar ideas
in his work in attempting to communicate ideas to experts and
to students who were new to the material being discussed. Steve
has a penchant for explaining things in ways that have enormous
intuitive value, and he has never shied away from using these
approaches to reach students and others just learning new
material. At the same time, Steve has always been a proponent
for rigor. Many of us who are familiar with Steve have heard him
utter ‘‘If it is true, then there is a proof . . .’’

As an example of this multi-pronged approach, one can exam-
ine the multiple methods by which he has investigated proofs for
the averaging theorem. Steve presented his version of the theorem
first in 1967 [2], a more technically mature version in the context

of real analysis [3], a version based on geometric principles
appropriate for students [4], and a version proved using the theory
of distributions [5].

This technical note is offered in much the same spirit. In this
note, the geometrical theorems presented by Quintard and
Whitaker [5, Appendix B] are examined in additional detail. The
primary purpose of this note is to bring some additional perspec-
tive to the geometric theorems in a manner that is consistent with
Steve’s own penchant for re-visiting results. In particular, in this
work we show (1) The geometrical theorems can be interpreted
in terms of the raw spatial moments of the pore structure within
the averaging volume; (2) For the case where the first spatial mo-
ment is aligned with the center of mass of the averaging volume,
the geometric theorems can be expressed in terms of the central
moments of the porous medium; (3) When the spatial moments
of the pore structure are spatially stationary, the geometrical the-
orems allow substantial simplification of nonlocal terms arising in
the averaged equations; and (4) In the context of volume averag-
ing, the geometric theorems of Quintard and Whitaker [5, Appen-
dix B] are better interpreted as statements regarding the spatial
stationarity of specific volume averaged quantities rather than an
explicit statement about the media disorder.

The geometric theorems presented by Quintard and Whitaker
[5, Appendix B] are useful in making various simplifications for
upscaling transport equations in multiphase media using the
method of volume averaging (MVA) [6]. As originally presented,
the proof of the associated theorems was elegant, but was not
the kind of constructive proof that often appeals to students and
to those interested in applications. In this short note, we also
provide some direct examples indicating how one might construc-
tively verify the proofs. As a second purpose for this note, some
technical details about the functional dependence of the geometric
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quantities involved in the method of volume averaging are given
additional clarification.

2. Geometric theorems: an example via upscaling diffusion

The process of diffusion (and diffusion-like processes) is one of
the archetypical problems for upscaling in porous media. This
problem has been studied for literally hundreds of years (see the
excellent review of this history by Markov [7]), and continues to
be an active area of research [8]. The purpose of this section is
not to review the upscaling of diffusion, but to provide a short
example as to how the geometric theorems arise in applications.

2.1. Microscale balance equations

We have adopted the process of pure diffusion in a porous med-
ium because it is one of the simplest transport process that can be
analyzed, and because it is a classical problem that is familiar to
many. The problem of diffusive transport arises, for example, in a

catalytic pellet [9]. We have illustrated a multiscale catalytic reac-
tor in Fig. 1. Here, three physical length scales are apparent: the
size of the reactor (length), the size of a typical catalyst pellet (L),
and the typical size characterizing the internal microporous struc-
ture of the catalyst itself (‘c). We are focused on upscaling the pro-
cess of diffusion that occurs in the pores of the catalytic pellet
(with length scale ‘c) up to a new resolution by averaging over
the domain V (with characteristic length scale, r0Þ. The practical
advantage for doing this is that, assuming that the microporous
structure of the pellet is reasonably similar from place to place
within the pellet, we can then treat the pellet as a single contin-
uum resolved at a scale of, r0, rather than having to resolve the pro-
cess at the substantially smaller scale, ‘c.

To start, we begin by defining the domain of a single pellet as
containing a fluid phase, a solid phase, and an interface; here we
denote the fluid as the c-phase the solid as the j-phase (Fig. 1).
The process of diffusion of a dilute chemical species within the
microporous catalytic pellet can be given by (assuming that con-
tinuum conditions hold, e.g., [9])

Nomenclature

AcjðxÞ domain of the fluid–solid interface within the averaging
region VðxÞ

cAcðr; tÞ microscale concentration field of chemical species A in
the c-phase, mol/m3

hcAcicjðx;tÞ intrinsic averaged concentration field of chemical spe-
cies A, mol/m3

~cAcðr; tÞ ¼ cAcðr; tÞ � hcAcicjðr;tÞ concentration deviation field of
chemical species A, mol/m3

Dc molecular diffusion coefficient, m2/s
f generic spatial scalar field
Gðr; tÞ boundary condition source term, mol/m2�s
IðrÞ initial distribution of cAc within a catalyst pellet, mol/m3

I the identity tensor
‘c the characteristic length of the catalyst pore, m
‘ size of the side of a square periodic unit cell, m
L characteristic length associated with a catalyst pellet

(macroscale), m
LC characteristic length associated with a catalyst pellet

(macroscale), m
Lmn characteristic length associated with a catalyst pellet

(macroscale), m
mnðxÞ the scalar magnitude field of Mn, m
MnðxÞ nth moment field of the pore space (or, alternatively, the

indicator function Uc); a tensor of order n, mn

ncjðrÞ unit normal vector directed from the c-phase toward
the j-phase

O fixed point of reference on an averaging volume used to
locate it independently of the centroid

O order of magnitude symbol
r position vector, m
r0 radius of the averaging region, m
t time, s
Vo domain of an averaging volume using a reference point

fixed to a unique reference point in the domain
VcðxÞ domain of the fluid phase within the averaging volume,

VðxÞ
VðxÞ ¼VcðxÞ [AcjðxÞ [VjðxÞ, domain of an averaging vol-

ume
VcðxÞ domain occupied by the c-phase within the averaging

volume VðxÞ
V volume of the averaging domain VðxÞ, m3

VcðxÞ volume of the c-phase contained within the averaging
domain VðxÞ, m3

w position vector locating the unique point O to identify-
ing the domain V, m

x position vector locating the center of mass of the do-
main V, m

yðr; xÞ position vector indicating the distance from r to x; the
explicit dependence upon x is sometimes suppressed
for notational convenience

hyijx first moment of the pore space computed with respect
to the centroid of the averaging volume, V;m

Greek symbols
ecðxÞ volume fraction (porosity) field of the fluid phase
k unit directional vector
CnðxÞ repeated outer vector product field defined by Eqs. (18)

and (19)
UcðxÞ c-phase indicator function
P repeated outer product symbol defined by Eq. (79)
qCðx; tÞ autocorrelation function for the concentration field cAc
qmn
ðxÞ autocorrelation function for the scalar magnitude field

mn

lnðxÞ the nth central moment of the pore space (or, alterna-
tively, the indicator function Uc); a tensor of order n, mn

ðf;g; nÞ components of a position vector, m

Symbols
r gradient operator with respect to the variable x
rr gradient operator with respect to the variable r
� the outer product symbol; a� b ¼ aibj

Subscripts
A an index, unique for each chemical species
c associated with the fluid phase
j associated with the fluid phase
cj associated with the solid–fluid interface
f f-component of a vector quantity
g g-component of a vector quantity
n n-component of a vector quantity
Note: Generally microscale quantities are generally refer-

enced to the spatial coordinate r; macroscale quantities
are generally referenced to the spatial coordinate x.
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