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A shallow flow generally features complex hydrodynamics induced by complicated domain topography
and geometry. A numerical scheme with well-balanced flux and source term gradients is therefore essen-
tial before a shallow flow model can be applied to simulate real-world problems. The issue of source term
balancing has been exhaustively investigated in grid-based numerical approaches, e.g. discontinuous
Galerkin finite element methods and finite volume Godunov-type methods. In recent years, a relatively
new computational method, smooth particle hydrodynamics (SPH), has started to gain popularity in solv-
ing the shallow water equations (SWEs). However, the well-balanced problem has not been fully inves-
tigated and resolved in the context of SPH. This work aims to discuss the well-balanced problem caused
by a standard SPH discretization to the SWEs with slope source terms and derive a corrected SPH algo-
rithm that is able to preserve the solution of lake at rest. In order to enhance the shock capturing capa-
bility of the resulting SPH model, the Monotone Upwind-centered Scheme for Conservation Laws
(MUSCL) is also explored and applied to enable Riemann solver based artificial viscosity. The new SPH
model is validated against several idealized benchmark tests and a real-world dam-break case and prom-
ising results are obtained.
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1. Introduction

When a fluid flow problem has a vertical scale much less than
its horizontal dimensions, the vertical particle acceleration may
be ignored and the assumption of hydrostatic pressure becomes
valid. The governing 3D Reynolds-averaged Navier-Stokes equa-
tions may then be simplified and integrated over depth to become
the 2D non-linear shallow water equations (SWEs). The SWEs have
been widely used in approximating the hydrodynamics of the
long-wave problems and have a wide range of applications in
coastal engineering, ocean modeling, river engineering and flood
modeling.

Analytical solution to the SWEs only exists for very simple cases
(e.g. Thacker [1]). Therefore, numerical methods are generally em-
ployed to seek approximate solutions to the SWEs. Traditionally,
the SWEs are usually solved by a grid based approach including
the finite difference method (FDM), the finite element method
(FEM) and the finite volume method (FVM). In recent years, a
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robust meshless approach, smooth particle hydrodynamics (SPH),
has started to gain popularity in computational fluid dynamics
(CFD) and being applied in shallow flow modeling. SPH is a fully
Lagrangian method proposed by Lucy [2] and Gingold and Mona-
ghan [3]. Detailed reviews of the approach can be found in [4-6].
SPH has been applied to solve a variety of complex fluid problems
including astrophysical flows [2,3], free surface flows [7-9,25] and
multi-phase flows [10]. SPH has also been adopted to simulate geo-
physics phenomena, such as debris flows and landslides [11,12]. As
a fully Lagrangian method, SPH has great potential in solving prob-
lems with free surface, deformable boundary, moving interface,
which commonly occur in dam break flow, debris flow and other
shallow flow phenomena. When solving these problems, grid
based methods (FDM, FEM, FVM) usually face some difficulties,
such as distorting and twisting of grid when handling large defor-
mation (for Lagrangian method, e.g. FEM), difficulty to analyze the
time history of field variables at a fixed point on the material (for
Eulerian method, e.g. FVM) and among others [5]. Combining the
advantages of the Lagrangian methods and Eulerian methods, the
Arbitrary Lagrangian Eulerian (ALE) method is able to trace the
time history of field variables at a fixed point on the material as
well as handling large deformation. However, a numerical model
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based on the ALE method may become unstable when the defor-
mation is significantly large [5].

In applying SPH to solve the SWEs, Wang and Shen [13] firstly
applied a standard SPH formulation to solve the 1D SWEs and
the numerical predictions were reported to match very well with
the analytical solutions, even in presence of shocks. Ata and Soulai-
mani [14] proposed a stabilized SPH method to solve the SWEs
with the bed slope and friction terms being neglected. Their ap-
proach was based on Riemann solvers and boasted of better
shock-capturing capability. Rodriguez-Paz and Bonet [15] intro-
duced a corrected SWE SPH scheme, in which the internal and
external forces were expressed in forms of energy and the vertical
velocity component was taken into account. De Leffe and Le Touzé
[16] proposed an algorithm to periodically redistribute the parti-
cles in order to improve solution accuracy. However, most of these
models are designed and tested for solving the SWEs that neglect
the source terms and therefore are not applicable to the practical
shallow flow problems where the domain topography is generally
very complex.

To enable stable and accurate simulations over complex domain
topographies, it is inevitable to mention the concept of ‘well-bal-
anced scheme’, which essentially refers to a numerical scheme that
maintains the steady-state solution, at least lake at rest, at the
computational level [17]. It is important for a numerical model
solving the SWEs to be ‘well-balanced’ in order to guarantee reli-
able predictions of shallow flows over complex domain topogra-
phies [17,18]. For instance, in modeling ocean waves, the water
depth is usually of the order of kilometers while the waves have
magnitudes of meters. The unphysical noises introduced by a
numerical scheme that is not well-balanced may be of the same or-
der as the waves and hence may completely ruin the numerical
solutions. Since it was proposed in [17], the concept of ‘well-bal-
anced scheme’ has been readily cited and adopted in developing
grid-based shallow flow models. Intensive research efforts have
been devoted in developing well-balanced shallow flow models
by numerous researchers, especially in the context of finite volume
Godunov-type schemes (e.g. [18-23]). However, in SPH, this prob-
lem has just started to gain attention from CFD researchers.

An initial attempt of developing a well-balanced SWE SPH mod-
el has been reported by Vacondio et al. [24]. The authors explicitly
included the slope source terms into their SPH discretization. Their
results indicated that the lake at rest solution in a domain with
topography cannot be preserved if a special numerical treatment
is not implemented. Their new model was demonstrated to repro-
duce the still water surface to certain level. To better resolve this
problem, Vacondio et al. [37] reported more recently a corrected
method for balancing the source terms. However, their model is
well-balanced only under the assumption that the particles are
equally distributed in space and have the same smooth length. Fur-
thermore, their model has not been validated by a more challeng-
ing real-world problem with very complex topography.

This papers aims to investigate further the well-balanced prob-
lem in developing SPH algorithms for solving the shallow water
equations with source terms, with a focus on preserving the solu-
tion of lake at rest. For this purpose, the well-balanced problem is
first analyzed and discussed. The error introduced by the standard
SPH approximation to the water depth over a varying bed profile is
then derived and subsequently corrected to obtain a new SPH for-
mula for both the continuity and the momentum equations, which
enables the source term balancing. To enhance the shock capturing
capability and increase the solution accuracy of the new corrected
SPH model, the Monotone Upwind-centered Scheme for Conserva-
tion Laws (MUSCL) is applied to improve the Riemann Solver based
artificial viscosity proposed by Monaghan [34]. After being demon-
strated to maintain satisfactorily the still water surface of a lake at
rest, the new corrected SPH model is then validated further by

applying it to simulate 1D and 2D shallow flow tests over non-uni-
form bottom topographies and promising results are produced.

2. Brief review of the SPH method

The essence of SPH method is that any generic function can be
represented as

700 = [ 10)3(x—x)ax (1)

where Q is the integral domain and é(x — x') is the Dirac delta func-
tion defined as
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In practice, §(x — x') is usually replaced by a smoothing kernel
function W(x — X/, h) with h being the smoothing length that deter-
mines the influence domain of the kernel. Hence Eq. (1) becomes

f(x) ~ /Qf(x’)W(x—x’,h)dx’ (3)

which is called the kernel approximation. In the context of SPH, ker-
nel approximation operator is usually marked with <> and so Eq.
(3) can be rewritten as

(%) = /Q FEOW(X — X, hydx (4)

The kernel approximation of the gradient of f(x) can be ob-
tained by

(VF (%) = / FX)TW(X — X, h)dx’ (5)

There are several mathematical conditions that the kernel func-
tion must satisfy, which are

(i) imW(x —x',h) = §(x — X', h)
(i) T, Wx—x hydx =1, which
consistency.
(iii) W(x —X',h) =0, |x — X'| > h where « is an integer (usually
<4)
(iv) W(x—x',h) = WX —x,h)

ensures the zero-order

In SPH calculations, it is practical to subdivide the integral do-
main Q into a finite set of N particles. Each particle carries a mass
of m; and has a density of p;, withj =1,2,3,...,N. The sum of the
mass for every particle gives the total mass of the fluid body under
consideration. The SPH approximation of f(x) and Vf(x) at x; can
then be calculated by replacing the integral with the summation
of respective quantities of the contributing particles, i.e.

N m
fi=> —fw; (6)
j=1 Pj
N m.
V=Y Lfvw; (7)
j=1 pj

where W = W(x; — X;, h). Since W(x — X', h) = 0 when |x — X| > kh,
the total number of the contributing particles is actually much less
than N.

In this work, a Gaussian kernel [5] is adopted, which leads to a
second-order accurate approximation. Detailed discussion of other
kernel functions may be found in [5].
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