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a b s t r a c t

Model predictive control (MPC) is a model-based control technique that uses an optimization algorithm
to generate optimal control actions. Based on the model used in optimization, MPC approaches can be
categorized as linear or nonlinear. Both classes have advantages and disadvantages in terms of control
accuracy and computational time. A typical linear model in open channel water management is the Inte-
grator Delay (ID) model, while a nonlinear model usually refers to the Saint-Venant equations. In earlier
work, we proposed the use of linearized Saint-Venant equations for MPC, where the model is formulated
in a linear time-varying format and time-varying parameters are estimated outside of the optimization.
Quadratic Programming (QP) is used to solve the optimization problem. However, the control accuracy of
such an MPC scheme is not clear. In this paper, we compare this approach with an MPC scheme that uses
Sequential Quadratic Programming (SQP) to solve the optimization problem. Because the estimation of
the time-varying parameters is integrated in the optimization in SQP, the solutions from SQP-based
MPC are expected to be superior to the solutions of QP-based approach. However, SQP can be computa-
tionally expensive. A simulation experiment illustrates that the QP-based MPC approach using a linear-
ized Saint-Venant model has an accurate approximation of the control performance of SQP.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decade, model predictive control (MPC) of open
channel flow has been a subject of extensive study [1–6]. MPC is
a model-based control technique that uses an optimization algo-
rithm to generate optimal control actions. Advantages of MPC are
that it predicts the future system dynamics, therefore being able
to take into account future known disturbances. It can also deal
with constraints within the optimization. Based on the type of
model used in the optimization, MPC approaches can be catego-
rized as linear or nonlinear. The focus of MPC in open channel
water management is mainly on efficient water delivery in irriga-
tion systems, and river operations for flood or drought prevention.
A common feature of the existing research is that, typically, linear
models are used for predicting the system dynamics, such as the
reservoir model and the classical Integrator Delay (ID) model in
[1–5]. Under certain assumptions, these linear models can approx-
imate the nonlinear system dynamics well. The MPC optimization
problems when using such linear models are easy and fast to solve.
Moreover, guaranteed global optimal solutions can be found.

A nonlinear model can normally include more system dynamics
than a linear one. This extra information in the nonlinear model
may increase the control accuracy in MPC. However, due to the
use of such a nonlinear model, the optimization problem can be-
come non-convex and hard to solve. Indeed, this is the case when
using the Saint-Venant equations. Theoretically, a guarantee for
finding the global optimum for nonlinear optimization cannot of-
ten be given [7]. Since the optimal action needs to be taken within
a prescribed time period in real-time control, computational time
is important in achieving the optimum. Unfortunately, such a non-
linear MPC scheme can be very time consuming, e.g., due to the
CPU-intensive model executions for the numerical calculation of
gradients of a Lagrangian function with respect to the control vari-
ables, especially in the areas where these gradients are flat. This
computational complexity in MPC using such a nonlinear model
was also stated by Barjas Blanco [6]. Therefore, they used a series
of reservoir models instead.

Some researchers use adjoint sensitivity analysis to speed up
the nonlinear optimization by analytically calculating the gradi-
ents of the Lagrangian function with respect to the control
variables [8,9]. This is attractive for making such an MPC imple-
mentation feasible in real-time control, but it needs extensive
analytical analysis of the nonlinear model and its derivatives
beforehand. Moreover, any change to the control problem
requires a new analytical derivation. For these reasons, the
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adjoint sensitivity analysis is not conducted in this paper. In-
stead, in [10], we proposed an MPC scheme using linearized
Saint-Venant equations in a time-varying format to approximate
the nonlinear dynamics. The scheme requires a much more com-
plex discretization and mathematical formulation of the equa-
tions than the reservoir model in [6]. This MPC scheme solves
the optimization problem with a standard Quadratic Program-
ming (QP) solver, which considers the model constraints as
linear.

The MPC approach in [10] is found to be the most accurate for
comparison with MPC using an Integrator Delay model and a Re-
duced Saint-Venant model. The proposed method formulates the
Saint-Venant equations as a linear time-varying state-space model.
It uses a ‘Forward Estimation’ to estimate the time-varying param-
eters outside of the optimization, based on the optimal solutions
over a prediction horizon from the previous control step. However,
due to the lack of information at the last prediction step, the opti-
mal solutions in the previous control step are not optimal anymore
in the present step. Therefore, it is unclear what the performance of
this QP-based MPC controller is. The purpose of this work is to ex-
plore the accuracy of the control procedure of [10] by comparing
the results with an MPC controller that formulates Sequential Qua-
dratic Programming (SQP) problems and solves the entire time-
varying Saint-Venant equations within the optimization. According
to Schittkowski [11], SQP is a state-of-the-art method for solving
nonlinear programming problems. Here the MPC scheme using this
method is called SQP-based MPC.

In this paper, we focus on the performance assessment of the
two MPC schemes in terms of water level deviations from the tar-
get and the control actions. Because of the integrated calculation of
the time-varying parameters within the optimization, the solutions
from SQP-based MPC are expected to be superior to the solutions
of QP-based approach, given sufficient computation time. It is the
question how the two methods compare in terms of computational
time and control accuracy. Regarding the control accuracy, the
SQP-based MPC can be used as a benchmark. In addition, for the
QP-based MPC, iterations are added between the ‘Forward Estima-
tion’ and the ‘Quadratic Programming’ blocks, in order to compen-
sate the influence of the lack of information at the last prediction
step. Therefore, another goal of this work is to investigate the sig-
nificance of this influence.

This paper is organized as follows. Section 2 describes the main
components of MPC, including the open channel flow modeling
and the optimization problem formulation. It summarizes the
QP-based MPC scheme using the linearized Saint-Venant model
and introduces the SQP-based MPC scheme. Section 3 introduces
the test case used to compare the control performance between
the two MPC schemes. A detailed demonstration of the results is
given in Section 4 and conclusions and future research are given
in Section 5.

2. Model predictive control of open channel flow

Model predictive control has a general structure which uses an
internal model to predict the future system dynamics over a finite
prediction horizon and solves a constrained optimization problem
with a certain optimization algorithm. MPC uses online optimiza-
tion, which means the optimization is conducted at every control
time step and only the first control action over the prediction hori-
zon is applied to the system. A typical MPC control problem in
open channel water management is to maintain a water level dis-
tant downstream of a control structure at the end of the canal
reach, which will also be the subject of this paper. In the following
sections, we discuss the main components of MPC for such a sys-
tem: internal model and optimization.

2.1. Open channel flow model

In order to control the open channel flow with MPC, the dynam-
ics of the system needs to be properly defined in the internal model
of the controller. Open channel flow dynamics is usually described
by the Saint-Venant equations, which contain the mass and
momentum conservations [12] shown in Eqs. (1) and (2):
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where Aw is the wetted area [m2], Q is the flow [m3/s], ql is the lat-
eral inflow per unit length [m3/s/m], v is the average flow velocity
[m/s], which equals Q/Aw, 1 is the water level above the reference
plane [m], Cz is the Chezy coefficient [m1/2/s], R is the hydraulic ra-
dius [m], which equals Aw/Pf (Pf is the wetted perimeter [m]) and g
is the gravity acceleration [m/s2], Dt is time step [s] and Dx is spa-
tial increment [m].

According to Stelling and Duinmeijer [13], the Saint-Venant
equations can be spatially discretized with staggered grids.
A semi-implicit scheme is applied to the time integration, where
the advection term in the momentum equation is explicitly dis-
cretized by a first-order upwind method. The friction term is line-
arized by using |Q| explicitly. All other terms are implicit. In this
way, the Saint-Venant equations are linearized at every time step.
Substituting the velocities of step n + 1 from the discretized version
of Eq. (2) into Eq. (1), the water levels can be calculated with a tri-
diagonal system, and the velocities are updated with the calculated
water levels through the momentum Eq. (2). The detailed discret-
ization of the Saint-Venant equations is included the Appendix.

In general, there is no specific format for the model constraints
in MPC. However, in QP-based MPC, the internal model is usually
formulated as a linear state-space system. Due to the inter-connec-
tion between water levels and velocities, the Saint-Venant equa-
tions are approximated by a linear state-space model that is
time-varying as shown in Eq. (3):

xkþ1 ¼ Akxk þ Bk
uuk þ Bk

ddk ð3Þ

where x is the state vector, A is the state matrix, u is the control in-
put vector, Bu is the control input matrix, d is the disturbance vector,
Bd is the disturbance matrix and k is the time step index. The de-
tailed formulation of each matrix is included in the Appendix.

2.2. Generic MPC formulation

Typically, an MPC problem in open channel water management
solves the minimization of a quadratic objective function, subject
to linear or nonlinear model equality constraints and linear
inequality constraints on the control inputs. The reason to use a
quadratic objective function is to balance both positive and nega-
tive variations of states and control inputs, such as water level
deviations from the target level and the change of controlled struc-
ture flow. The formulation can then be written for a certain control
time step k:

minXk ;Uk JðXk;UkÞ ¼ minXk ;Uk
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where J represents a quadratic objective function, Xk = [xk+1,
. . ., xk+n]T and Uk = [uk, . . ., uk+n�1]T are the states and control inputs
over the prediction horizon with a length of n, hi and ri are the ith
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