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a b s t r a c t

Considering flow and transport in three-dimensional, variably saturated, composite bimodal heteroge-
neous formations, the main purpose of this study was to extend the previous analyses [37], restricted
to the one-region case in which the entire water-filled pore space is mobile, to the two-region case in
which part of the water-filled pore space of each of the sub-soils of the composite formation is stagnant,
and to investigate the effect of the interaction between the mobile and the immobile regions on solute
transport in these formations. Following Russo [37], formations with fine- and coarse-textured embedded
soils (FTES- and CTES-formations, respectively), were considered in the analyses. Main results of the pres-
ent study suggest that mass exchange between the two regions masks features of the transport that exist
in bimodal, one-region flow domains, related to characteristics of the unsaturated hydraulic conductivity
in variably saturated bimodal, heterogeneous formations. In particular, the crossover behavior (i.e., that
under relatively wet conditions, solute spread is larger in the FTES-formations than in the CTES-forma-
tions, while the opposite occurs under relatively dry conditions) characterizing one-region, bimodal flow
domains disappears in two-region, bimodal flow domains. The latter attributes to the transfer of mass
from the mobile region to the immobile region and the extension of the capture zone for the solute par-
ticles associated with the fine-textured embedded soil to lower water saturations. Consequently, for both
steady state- and transient-flows, as water saturation decreases, the response of the composite forma-
tions is essentially independent of the texture of the embedded soil.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Soil properties relevant to solute transport such as the hydraulic
conductivity of near-surface geologic formations often exhibit a
considerable spatial heterogeneity ([4,24,39,15,38,42,19], among
others) that generally is irregular. Based on experimental evidence
(e.g., [39,6,47,38]), it is generally assumed that the heterogeneous
formation may be viewed as a single population whose properties
follow a unimodal distribution and a two-point spatial covariance
with a single, finite length-scale. This assumption may be
supported on theoretical grounds, based on the concept of the exis-
tence of a discrete hierarchy of length-scales of heterogeneity [9],
with disparity between scales. Still, a more general approach is re-
quired for the situation in which the disparity between different
length-scales is not large enough to neglect the variability on one
scale when considering the other.

There are two alternative approaches to deal with situations in
which the spatial variability of the formation properties is charac-
terized by a relatively complex correlation structure. The first ap-
proach (e.g., [12,31,21,33,34,36,37]), adopted also in the present

study, replaces the spatial arrangement of distinct soil materials
with a single, composite material whose properties are multimodal
but statistically homogeneous. The second approach, the random
domain decomposition (RDD) model [53–55] identifies the shape
of the soil inclusions and their three-dimensional arrangement
probabilistically and results in non-stationary statistics. The first
approach, which applies naturally to cases in which the soil mate-
rials are not compactly grouped in clusters, has few advantages
over the RDD model due to its simplicity [53]. Unlike the RDD
model, however, the first approach may not be appropriate when
the contrast between mean conductivities of the composite forma-
tion exceeds few orders of magnitude.

Based on the first-order, Lagrangian-stochastic analysis of va-
dose-zone transport [34,35], Russo [37] invesigated the effect of
the embedded soil’s texture and the mean pressure head (i.e., mean
water saturation), on solute transport in steady-state flows in these
formations. Two distinct variably saturated composite formations
consisting of relatively low-conductive, fine-textured embedded
soil with appreciable capillary forces, and high-conductive,
coarse-textured embedded soil with relatively weak capillary
forces (will be termed hereafter as FTES- and CTES-formations,
respectively), were considered in the analyses. The main results
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of the first-order analyses, confirmed by three-dimensional numer-
ical simulations for more realistic conditions [37], suggested that
features of solute transport in variably saturated, heterogeneous
bimodal FTES and CTES formations exhibit a crossover behavior
attributed to the concave nature of the unsaturated hydraulic con-
ductivity in these formations.

This crossover behavior means that under relatively wet condi-
tions solute spread is larger in the FTES-formations than in the
CTES-formations, while the opposite occurs when the formation
is relatively dry. Furthermore, the results of the numerical simula-
tions [37] suggested that also under transient, non-monotonous
flows, the difference between the responses of the FTES-formations
and the CTES-formations decreases substantially, similar to the sit-
uation in steady state flows associated with intermediate water
saturations corresponding to the mean pressure head at which
the crossover occurs.

The analyses of Russo [37], which, considered bimodal forma-
tions associated with relatively small volume fraction of the
embedded soil, are restricted to limited-contrasts situations; fur-
thermore, the analyses focused on the case in which the entire
water-filled pore space is mobile, will be termed hereafter as the
one-region case. Near-surface formations, however, may exhibit
complex-structured features such as clay soils comprised of aggre-
gates of small-diameter particles [56,18,14], or sandy soils in
which the individual sand particles comprising the formation have
non-zero porosity [2].

In these circumstances, the water-filled pores between the soil
aggregates and/or the sand particles are viewed as channels
through which relatively rapid water flow and solute transport
may take place. In turn, the soil aggregates and/or the sand parti-
cles are typically viewed as regions within which the water-
filled-pore-space is essentially stagnant and may exchange solute
with the mobile water region by a rate-limiting diffusion process
(e.g., [7,52,28,51,40]). The latter case will be termed hereafter as
the two-region case.

Field-scale investigations of solute transport (e.g., the transport
of bromacil in transient, vadose zone flow [43] and the transport of
bromide in steady state, groundwater flow [20], suggest that the
transport in these spatially heterogeneous sites is better quantified
by the two-region, mobile-immobile transport model, than by the
classical, one-region, convection dispersion equation model. The
results of these studies support the significance of the rate-limiting
mass transfer between the mobile and the immobile regions occur-
ring in heterogeneous formations.

Considering composite bimodal heterogeneous formations, the
present study focuses on the case wherein each of the sub-soils
of the composite formation has secondary porosity features (e.g.,
microporosity) that may give rise to mobile-immobile behavior.
Specifically, the main purpose of this study is to extend the previ-
ous analyses of flow and transport in variably saturated, one-
region, bimodal heterogeneous formations [37] to the case in
which part of the water-filled pore space of each of the sub-soils
of the composite formation is stagnant, and to investigate the
effect of the interaction between the mobile and the immobile
regions on solute transport in these formations.

The study will be carried out through a series of detailed
numerical analyses of flow and transport in a hypothetical, yet
realistic, three-dimensional (3-D) variably saturated, two-region,
composite, bimodal heterogeneous flow domain. The approach
adopted in the present study, viewed as a ‘‘numerical experi-
ment’’, is an efficient tool for studying processes’ mechanism
and evaluating the flow system’s response to plausible scenarios.
At the price of reduced generality it circumvents most of the
stringent assumptions of analytical studies, and, facilitates analy-
sis of simplified, yet realistic situations at a fraction of the cost of
physical experiments

2. Governing partial differential equations

A Cartesian coordinate system (x1, x2, x3, where x1 is directed
vertically downwards) which coincides with the principal axes
associated with the principal components of the hydraulic conduc-
tivity tensor, is considered here. Taking into account water
extraction by plant roots, the Richards equation that governs flow
in a rigid, variably saturated 3-D flow domain is:
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where t is time, w = w(x, t) is the pressure head, h = h(x, t) is the
volumetric water content, Kii = Kii(w,x), i = 1,2,3, are the principal
components of taken as a symmetrical tensor of rank two with
zero off-diagonal components and Sw = Sw(x, t) is a sink term,
representing water uptake by plant roots, given [25,5] as:

Swðx; tÞ ¼ �Reðx; tÞKðw; xÞ½wrðtÞ � wðx; tÞ � pðx; tÞ� ð2Þ

where Re(x, t) is the root effectiveness function, wr is the total pres-
sure head at the root-soil interface and p is the osmotic pressure
head of the soil solution.

Neglecting solute uptake by plant roots, the equation governing
two-region, mobile-immobile transport of a passive solute (tracer)
in a variably saturated 3-D flow system is:
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where hm(x, t) = h(x, t) � him(x) and him(x) are the mobile and the
immobile water contents, respectively; cm(x, t) and cim(x, t) are the
resident solute concentrations (expressed as mass per unit volume
of the soil solution) in the mobile and immobile regions, respec-
tively; ui (i = 1,2,3) are components of the Eulerian velocity vector
and Dij (i,j = 1,2,3) are components of the pore-scale dispersion
tensor given [3] as:

Dij ¼ dijðkT juj þ DmÞ þ ðkL � kTÞuiuj=juj ð4aÞ

where kL and kT are the longitudinal and the transverse pore-scale
dispersivities; dij is the Kronecker delta (i.e., dij = 1, if i = j, and
dij = 0 if i – j); |u|=(u1

2 + u2
2 + u3

2)1/2 and Dm is the effective molec-
ular diffusion coefficient in the mobile region, given (Millington and
Quirk, 1961) as

Dm ¼ D0 h10=3
m =h2

s
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where D0 is the molecular diffusion coefficient in water, hs = hs(x) is
the saturated volumetric water content, and c = c(x) is the first-
order mass transfer coefficient representing solute diffusion
between the mobile and the immobile regions, calculated for spher-
ical particles [48] as:

c ¼ 15himDim=r2
a ð5Þ

where ra is the average radius of the soil particles, him(x) is the
immobile water content and Dim = Dim(x) is the effective solute dif-
fusion coefficient in the immobile region (given by (4b) with him

replacing hm and Dim replacing Dm).
Regarding the transport equation (3), it should be emphasized

(e.g., [43]) that at the small c limit, c?0, there is no mass transfer
to the immobile region, i.e., cim = 0 and (3) reduces to the one-
region convection–dispersion equation (CDE) with c = cm and
h = hm. At the large c limit, c?1, physical equilibrium between
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