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a b s t r a c t

Practical engineering applications of open channel flow modelling involve geometric terms arising from
variations in channel shape, bottom slope and friction. This paper presents the family of schemes that sat-
isfy the generalised C-property for which static equilibrium is a particular case, in the framework of one-
dimensional open channel flows. This approach, named Auxiliary Variable-based Balancing, consists of
using an auxiliary variable in place of the flow variables in the diffusive part of the flux estimate. The aux-
iliary variable is defined so as to achieve a zero gradient under steady-state conditions, whatever the
geometry. Many approaches presented in the literature can be viewed as a particular AVB case. Three
auxiliary variables are presented in this paper: water elevation, specific force and hydraulic head. The
methodology is applied to three classical Riemann solvers: HLL, Roe and the Q-scheme. The results are
compared on five test-cases: three steady-state configurations including friction, singular head losses
and variations in bottom elevation, channel width and banks slope and two transient test-case (dam-
break problems on rectangular and triangular channel). In each case, the auxiliary variable that best pre-
serves the steady-state configuration is the hydraulic head. Besides, using the head as auxiliary variable
allows head loss functions due to singularities to be incorporated directly in the governing equations,
without the need for internal boundaries. However, it is generally less accurate when sharp transients
are involved.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In hydrodynamic modelling, real-world applications of compu-
tational open channel simulations involve the discretization of
source terms arising from bottom slope, non-prismatic channel,
etc. Attempting to discretize the fluxes and source terms indepen-
dently from each other usually leads to stability problems. An
indispensable prerequisite is that the discretization of flux gradi-
ents and geometric source terms should allow static equilibrium
conditions to be preserved. This is known as the C-property
[4,38]. The need for source term discretization techniques that pre-
serve equilibrium conditions without introducing spurious oscilla-
tions in the computed variables has led to the general notion of
well-balanced schemes. Over the past two decades, substantial
research effort has been devoted to the influence of source terms
discretization techniques [32] and new definitions that preserve
the C-property, including applications to high-order schemes such
as WENO (weighted essentially non-oscillatory) methods (e.g.
[7,10,13,39]).

The various existing source term discretization approaches may
be classified into two broad families: (i) approaches where the

source term discretization technique is adapted to the flux formu-
lae, and (ii) approaches where the flux formulae are adapted from,
or derived in a coupled way with, the source term discretization.
Examples of the former approach are source term upwinding
[4,38] and derived techniques such as predictor–corrector [3] or
introduction of the source terms in the flux formulation [9], diver-
gence form for the bed slope source term (DBF) [37], the quasi-
steady wave propagation method [29], asymptotic balancing [12]
or the source term projection technique in discontinuous Galerkin
techniques [27]. Examples of the latter are the well-balanced
approach [1,2,8,24,31,35], flux and source term splitting [11],
characteristics-based approximate-state and augmented Riemann
solvers [10,16,18,20,30], the homogeneous approach [28] and
other static equilibrium-preserving techniques [6,19,40].

Various solutions have also been proposed to enforce the
C-property in finite volume-based discretizations. One of the earli-
est solutions, proposed in [33] for the solution of the SWE and later
extended in [40], consists in replacing the water depth with the
free surface elevation. This option can be extended to the open
channel equations in arbitrary-shaped channels, as shown in the
present paper. It has the drawback that simple flow configurations
such as uniform flow over a constant slope cannot be computed
accurately (see Section 3.2). Another option is to approximate the
variations in the cross-sectional area with a consistent estimate
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taken from the balance between the specific force and the source
term in the momentum equation [6]. The estimate is defined in
such a way that it is zero under steady state conditions. Very sim-
ilar formulae to that of [6] have been obtained using completely
different approaches in [28,30]. The approaches [6,28,30] have
the common point that the gradient in one of the flow variables
is replaced with the gradient in another variable, called auxiliary
variable hereafter. This gradient is zero under static conditions.
That different approaches yield the same formulae lead to wonder
whether a general methodology can be derived to define auxiliary
variables.

In the present paper, the principle of Auxiliary Variable-based
Balancing (AVB) is presented for one-dimensional free surface flow
calculations in non-prismatic, trapezoidal channels. This is moti-
vated by the fact that in industrial open channel packages, the
cross-sectional geometry is broken into a set of trapezoidal ele-
ments. The AVB approach is used to derive flux formulae that allow
non-static, steady state flow conditions to be preserved, even at
low orders of discretization, that is, when first-order schemes are
used.

The principle of the AVB method is presented for the water
hammer and one-dimensional SWE in [25]. However, the one-
dimensional shallow water equations are a very simplified descrip-
tion of free surface flows in natural channels. Besides, only one
possible approach for source term discretization (a variant of
source term upwinding) is considered in [25]. The applicability of
the approach to more complex cross-sections and other source
term discretization approaches is not investigated in [25]. The
objectives of the present paper are (i) to present the methodology
of Auxiliary Variable-based Balancing (AVB), (ii) to apply the AVB
approach to the open channel flow equations in a well-balanced,
finite volume framework, (iii) to provide the flux and source term
discretizations for a variety of Riemann solvers, and (iv) to analyse
the accuracy of the numerical solutions obtained using a number of
various AVB-based discretizations. As mentioned above, first-order
space discretizations are retained for the sake of computational
rapidity.

The structure of the paper is as follows. Section 2 presents the
governing equations and their discretisation. The AVB methodol-
ogy is detailed in Section 3 and its application to classical Riemann
solvers presented in Section 4. Section 5 provides computational
examples, including steady-state configurations and transient
test-cases as well as a convergence analysis for the classical
dam-break problem (for which an analytical solution is available).

2. Governing equations and solution method

2.1. Governing equations

The purpose is to solve 2 � 2 hyperbolic systems of conserva-
tion laws in the form
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where U, F and S are defined as
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where A is the cross-sectional area, g is the gravitational accelera-
tion, M is the specific force, P is the pressure force exerted on the
wetted cross-sectional area, S0 and Sf are respectively the bottom
and energy slope, R is the x-component of the reaction of the walls
onto the water (if the channel is non-prismatic) and q is the water
density.

The forces P and R are derived from the assumption of a hydro-
static pressure distribution and obey the following definitions [14]:
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where W(z) is the width of the channel at the elevation z, h is the
water depth (that is the distance between the lowest point in the
cross-section and the free surface), z0 = z � zb is the elevation above
the bottom lowest point and f is the free surface elevation (Fig. 1).

The energy slope is classically assumed to obey a turbulent-type
friction law such as Manning’s law:

Sf ¼ n2
Mu2R�4=3

H ð5Þ

where nM is Manning’s friction coefficient, u = Q/A is the flow veloc-
ity and RH is the hydraulic radius, defined as the ratio of the cross-
sectional area A to the wetted perimeter v, yielding

Sf ¼ n2
MQ2A�10=3v4=3 ð6Þ

It is noted that the Jacobian matrix A of F with respect to U is
given by

A ¼ @F
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� �
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where the speed c of the waves in still water is defined as
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q

� �
@A
¼ gA

b
ð8Þ

where b = W(f) is the top width of the channel. The matrix A can be
diagonalized into a matrix K defined as:

K ¼ kð1Þ 0
0 kð2Þ

" #
ð9aÞ

kð1Þ ¼ u� c ð9bÞ
kð2Þ ¼ uþ c ð9cÞ

The problem is assumed to be properly posed hereafter, that is,
the initial and boundary conditions are specified such that Eq. (1)
can be solved uniquely for U at all points of a computational
domain [0,L] for all times t > 0.

2.2. Finite volume discretization

Eq. (1) is discretized using a finite volume formalism as
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where the subscript i denotes a cell average, subscripts i� 1
2 denote

estimates at the interfaces between the computational cells, the

Fig. 1. Channel geometry. (Left) longitudinal view: bottom and water elevation.
(Right) transversal view: channel width and depth.
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