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a b s t r a c t

Like precipitation, the raindrop size distribution (DSD) is strongly variable in space and time. Understand-
ing this variability is important for quantifying and minimizing some of the uncertainties in radar mea-
surements and their interpretation in terms of rain rate. At the typical operational radar pixel scale (i.e.,
1 � 1 km2), the variability of the DSD is not well documented and understood. A network of 16 identical
disdrometers deployed over a 1 � 1 km2 area provides an adequate data set to investigate this small-scale
variability of the DSD. The single-moment and double-moment DSD scaling approaches are used to ana-
lyze the DSD variability for a set of 36 rain events of various types. At fine temporal resolutions, neither
the single-moment nor the double-moment normalization capture all the DSD variability, and the scaled
DSDs appear different at the point and at the pixel scales. The double-moment normalization can how-
ever be used to obtain reliable estimates of the DSD moments at the pixel scale from point measure-
ments, providing a way to upscale DSD moments. At coarser temporal resolutions, the spatial
variability within the pixel becomes negligible, and the scaled DSDs are similar at the two spatial scales.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Given the large number of raindrops in a given volume of rain-
fall, the rain drop size distribution (DSD hereinafter) is a conve-
nient statistical way to summarize the variety of drop sizes
encountered. The DSD reflects the microphysical and dynamic pro-
cesses at work in the clouds and during the fall of raindrops (see [1]
for example). From a remote sensing point of view, DSD is crucial
to understand measurements from weather radars, and to convert
these measurements into values of rain rate, the variable of inter-
est for many quantitative applications.

Because of the complex interactions between these microphys-
ical processes and turbulence in the atmosphere, DSD (like precip-
itation in general) is strongly variable in space and time e.g., [2–5].
This variability has an influence on radar measurements and their
quantitative interpretation as rain rate estimates [6]. There is how-
ever a lack of understanding of the DSD variability at small spatial
scales, mainly because of a lack of adequate measurements.
Miriovsky et al. [7] have investigated this issue, but because of
the limited number of instruments involved and/or because of
their different types, the analyses were not conclusive in terms
of the quantification of the spatial variability of the DSD at small
scales. Recently, Lee et al. [8] have also studied the spatial variabil-
ity of the DSD using data collected from 4 precipitation occurrence
sensor systems (POSS) and an X-band weather radar, and Tokay
and Bashor [9] have studied the spatial correlation of some

moments of the DSD using data from 3 Joss-Waldvogel disdrome-
ters. These investigations of the spatial structure of (moments) of
the DSD were also limited by the small number of instruments.

To tackle this issue, a network of 16 identical optical disdrome-
ters (Parsivel) has been deployed over a typical radar pixel
(1 � 1 km2) on EPFL campus in Lausanne, Switzerland, in Spring
2009 [10]. The data collected with this network allow to investi-
gate the variability of the DSD at small scales, which is very rele-
vant for radar rain-rate retrieval. The DSD scaling approach
proposed by Sempere-Torres et al. [11] and further generalized
by Lee et al. [12] has been developed to investigate the variability
of the DSD and to take it into account through scaling parameters
and scaled DSD functions. It generalizes and unifies other normal-
ization techniques of the DSD e.g., [13,14]. Investigating the link
between turbulence and raindrop characteristics, Lovejoy and
Schertzer [15] proposed a normalization of the drop mass (and
not size) distribution based on two dimensional quantities related
to mass and length (the drop mass concentration and the mean
drop mass). This alternative normalization approach will not be
considered in this study as we focus on the DSD.

In the present work, the scaling approach is used in order to
investigate the DSD variability within a radar pixel scale. The main
objective is to investigate if the DSD variability can be completely
described and quantified by the variability of one or two DSD
moments, or if it is related to more complex variabilities of the in-
volved microphysical and dynamic processes. In other words, can
the scaling approach be used to upscale the (point) DSD measure-
ments at the radar pixel scale? To answer this question, the uncer-
tainty due to measurement errors must be considered.
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This article is organized as follows: Section 2 presents the scal-
ing approach, while Section 3 describes the data used in the pres-
ent analysis. Section 4 explains how the uncertainty due to
measurement errors is quantified and taken into account. The main
results are detailed in Section 5, and the conclusions are given in
Section 6.

2. Methodology

2.1. Single-moment normalization

Sempere-Torres et al. [11] proposed a general scaling formalism
based on the normalization of the DSD by a single moment (of the
DSD). Sempere-Torres et al. [16] have experimentally investigated
the validity of the single-moment normalization approach. This ap-
proach has been successfully employed to study the microstruc-
ture of extreme precipitation [17], the variability of the DSD in a
squall line [4] or the variability of the Z-R relationship for intense
Mediterranean rainfall [18].

Let D (mm) be the equivolume diameter of a raindrop, and N(D)
(mm�1 m�3) the DSD. N(D)dD is hence the number of drops per m3

with a diameter in [D,D + dD]. N(D) can also be written as the ratio
between the total concentration of drops Nt (m�3) and a character-
istic diameter Dc (mm), multiplied by a probability density func-
tion f (�) obtained by normalizing the diameter by Dc:

NðDÞ ¼ Nt

Dc
f

D
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� �
ð1Þ

Using this notation, the moment of order n can be written as
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n
c

Z 1

0

D
Dc

� �n

f
D
Dc

� �
d

D
Dc

� �
ð2Þ

where Cn is a dimensionless constant for the units. The diameter D
is supposed to vary between 0 and 1. It is assumed that Nt and Dc

can be expressed as power laws of a given reference moment of the
DSD:

Nt ¼ aNt M
bNt
i ð3Þ

Dc ¼ aDc M
bDc
i ð4Þ

where Mi is the reference moment of order i:

Mi ¼ Ci

Z 1

0
DiNðDÞdD ð5Þ

Injecting Eqs. (3) and (4) in (1) leads to

NðD;MiÞ ¼
aNt

aDc
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�bDc
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which can be written

NðD;MiÞ ¼ Ma
i gðx1Þ ð7Þ

where x1 ¼ DM�b
i is a normalized diameter (mm1�ib m3b). The scal-

ing parameters a and b are defined as

a ¼ bNt
� bDc

ð8Þ
b ¼ bDc

ð9Þ

g is called the single-moment scaled DSD function
(mm�(1+ia) m�3(1�a)). From Eq. (7), we have

Mn ¼ C1;nMcn
i ð10Þ

with

C1;n ¼
Z 1

0
xn

1gðx1Þdx1 ð11Þ

cn ¼ aþ bðnþ 1Þ ð12Þ

The index 1 in C1,n indicates that the single-moment normalization
is considered. From Eq. (12), we see that b can be estimated as the
slope of the linear regression of cn as a function of the moment or-
der plus 1. Using n = i, in Eqs. (11) and (12), we obtain the self-con-
sistency constraints:

C1;i ¼ 1 ¼
Z 1

0
xi

1gðx1Þdx1 ð13Þ

aþ bðiþ 1Þ ¼ 1 ð14Þ

According to Eq. (10), any moment of the DSD can be expressed as a
power law of the reference moment Mi, with prefactor and expo-
nent being functions of the scaling parameters a and b as well as
of the order n of the considered moment.

The rain rate R (mm h�1), defined as

R ¼ 6p10�4
Z 1

0
D3vðDÞNðDÞdD ð15Þ

where v(D) (m s�1) is the fall velocity of a drop of diameter D.
Assuming v(D) = 3.778D0.67 [19], R corresponds to a moment of
order 3.67, and will be used as reference moment for the single-
moment normalization, similarly to [4,11]. In this case, x1 is
expressed in mm1�b hb, and g in mm�(1+a) ha m�3.

As illustrated by Uijlenhoet et al. [17], the scaled DSD function g
can be modeled using a gamma function:

ĝðx1Þ ¼ j1xl1�1
1 e�k1x1 ð16Þ

Injecting Eq. (16) in the self-consistency constraint Eq. (13)
imposes:

j1 ¼
kl1þi

1

CiCðl1 þ iÞ ð17Þ

If i = 3.67, then Ci = 6p10�4 � 3.778.

2.2. Double-moment normalization

Lee et al. [12] have extended the single-moment DSD scaling
approach and proposed a double-moment normalization, unifying
the different existing DSD normalization techniques e.g., [13,14].
The double-moment normalization has been used to investigate
the characteristic microstructure of tropical rainfall [20] as well
as the spatial variability of the DSD over a few kilometers [8].

Using Eq. (2) for two reference moments of order i and j, Nt and
Dc can be expressed as double power laws of these two moments
Mi and Mj:

Nt ¼ C2;Nt M
bNt ;i

i M
bNt ;j

j ð18Þ

Dc ¼ C2;Dc M
bDc ;i

i M
bDc ;j

j ð19Þ

Injecting Eqs. (18) and (19) into Eqs. (1) and (5) leads to:

NðD;Mi;MjÞ ¼ Mðjþ1Þ=ðj�iÞ
i Mðiþ1Þ=ði�jÞ

j hðx2Þ ð20Þ

where x2 ¼ DM1=ðj�iÞ
i M�1=ðj�iÞ

j is dimensionless. h is called the double-
moment scaled DSD function and is also dimensionless. From Eq.
(20), we have

Mn ¼ C2;nMðj�nÞ=ðj�iÞ
i Mðn�iÞ=ðj�iÞ

j ð21Þ

with

C2;n ¼
Z 1

0
xn

2hðx2Þdx2 ð22Þ

The index 2 in C2,n indicates that the double-moment normalization
is considered. Using n = i and n = j in Eq. (22), we obtain the self-
consistency constraints:
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