
A FEniCS-based programming framework for modeling turbulent flow
by the Reynolds-averaged Navier–Stokes equations

Mikael Mortensen a,b, Hans Petter Langtangen b,c,⇑, Garth N. Wells d

a Norwegian Defence Research Establishment, 2007 Kjeller, Norway
b Center for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
c Department of Informatics, University of Oslo, P.O. Box 1080, Blindern, 0316 Oslo, Norway
d Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

a r t i c l e i n f o

Article history:
Available online 22 March 2011

Keywords:
Turbulent flow
RANS models
Finite elements
Python
Object-oriented programming
Problem solving environment

a b s t r a c t

Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation
with both models and numerical solution methods. This work presents the design and implementation of
a flexible, programmable software framework for assisting with numerical experiments in computational
turbulence. The framework targets Reynolds-averaged Navier–Stokes models, discretized by finite ele-
ment methods. The novel implementation makes use of Python and the FEniCS package, the combination
of which leads to compact and reusable code, where model- and solver-specific code resemble closely the
mathematical formulation of equations and algorithms. The presented ideas and programming tech-
niques are also applicable to other fields that involve systems of nonlinear partial differential equations.
We demonstrate the framework in two applications and investigate the impact of various linearizations
on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier–Stokes model.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulence is the rule rather than the exception when water
flows in nature, but finding the proper turbulence model for a gi-
ven flow case is demanding. There exists a large number of differ-
ent turbulence models, and a researcher in computational
turbulence would benefit from being able to easily switch between
models, combine models, refine models and implement new ones.
As the models consist of complex, highly nonlinear systems of par-
tial differential equations (PDEs), coupled with the Navier–Stokes
(NS) equations, constructing efficient and robust iteration tech-
niques is model- and problem-dependent, and hence subject to
extensive experimentation. Flexible software tools can greatly as-
sist the researcher experimenting with models and numerical
methods. This work demonstrates how flexible software can be de-
signed and implemented using modern programming tools and
techniques.

Precise prediction of turbulent flows is still a very challenging
task. It is commonly accepted that solutions of the Navier–Stokes
equations, with sufficient resolution of all scales in space and time
(Direct Numerical Simulation, DNS), describe turbulent flow. Such
an approach is, nevertheless, computationally feasible only for low

Reynolds number flow and simple geometries, at least for the fore-
seeable future. Large Eddy Simulations (LES), which resolve large
scale motions and use subgrid models to represent the unresolved
scales are computationally less expensive than DNS, but are still
too expensive for the simulation of turbulent flows in many prac-
tical applications. A computationally efficient approach to turbu-
lent flows is to work with Reynolds-averaged Navier–Stokes
(RANS) models. RANS models involve solving the incompressible
NS equations in combination with a set of transport equations
for statistical turbulence quantities. The uncertainty in RANS mod-
els lies in the extra transport equations, and for a given flow prob-
lem it is a challenge to pick an appropriate model. There is hence a
need for a researcher to experiment with different models to arrive
at firm conclusions on the physics of a problem.

Most commercial computational fluid dynamics (CFD) packages
contain a limited number of turbulence models, but allow users to
add new models through ‘‘user subroutines’’ which are called at
each time level in a simulation. The implementation of such rou-
tines can be difficult, and new models might not fit easily within
the constraints imposed by the design of the package and the ‘‘user
subroutine’’ interface. The result is that a specific package may only
support a fraction of the models that a practitioner would wish to
have access to. There is a need for CFD software with a flexible de-
sign so that new PDEs can be added quickly and reliably, and so
that solution approaches can easily be composed. We believe that
the most effective way of realizing such features is to have a pro-
grammable framework, where the models and numerics are

0309-1708/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advwatres.2011.02.013

⇑ Corresponding author at: Center for Biomedical Computing, Simula Research
Laboratory, P.O. Box 134, 1325 Lysaker, Norway.

E-mail addresses: mikael.mortensen@ffi.no (M. Mortensen), hpl@simula.no (H.P.
Langtangen), gnw20@cam.ac.uk (G.N. Wells).

Advances in Water Resources 34 (2011) 1082–1101

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres

http://dx.doi.org/10.1016/j.advwatres.2011.02.013
mailto:mikael.mortensen@ffi.no
mailto:hpl@simula.no
mailto:gnw20@cam.ac.uk
http://dx.doi.org/10.1016/j.advwatres.2011.02.013
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


defined in terms of a compact, high-level computer language with
a syntax that is based on mathematical language and abstractions.

A software system for RANS modeling must provide higher-
order spatial discretizations, fine-grained control of linearizations,
support for both Picard and Newton type iteration methods, under-
relaxation, restart of models, combinations of models and the easy
implementation of new PDEs. Standard building blocks needed in
PDE software, such as forming coefficient matrices and solving lin-
ear systems, can act as black boxes for a researcher in computa-
tional turbulence. To the authors’ knowledge, there is little
software with the aforementioned flexibility for incompressible
CFD. There are, however, many programmable environments for
solving PDEs. A non-exhaustive list includes Cactus [7], COMSOL
Multiphysics [11], deal.II [12,2], Diffpack [13], DUNE [16], FEniCS
[19] [37], Dular and Geuzaine [15], GetFEM++ [20], OpenFOAM
[43], Overture [44], Proteus [47] and SAMRAI [51]. Only a few of
these packages have been extensively used for turbulent flow.
OpenFOAM [43] is a well-structured and widely used object-
oriented C++ framework for CFD, based on finite volume methods,
where new models can quite easily be added through high-level
C++ statements. Overture [44,6] is also an object-oriented C++ li-
brary used for CFD problems, allowing complex movements of
overlapping grids. Proteus [47] is a modern Python- and finite ele-
ment-based software environment for solving PDEs, and has been
used extensively for CFD problems, including free surface flow
and RANS modeling. FEniCS [19,36] is a recent C++/Python frame-
work, where systems of PDEs and corresponding discretization and
iteration strategies can be defined in terms of a few high-level Py-
thon statements which inherit the mathematical structure of the
problem, and from which low level code is generated. The ap-
proach advocated in this work utilizes FEniCS tools. All FEniCS
components are freely available under GNU general public licenses
[19]. A number of application libraries that make use of the FEniCS
software have been published [57]. For instance, cbc.solve [9] is
a framework for solving the incompressible Navier–Stokes equa-
tions and the Rheology Application Engine (Rheagen) [48] is a
framework for simulating non-Newtonian flows. Both applications
share some of the features of the current work.

Traditional simulation software packages are usually imple-
mented in Fortran, C, or C++ because of the need for high compu-
tational performance. A consequence is that these packages are
less user-friendly and flexible, but far more efficient, than similar
projects implemented in scripting languages such as Matlab or Py-
thon. In FEniCS, scripting is combined with symbolic mathematics
and code generation to provide both user-friendliness and effi-
ciency. Specifically, the Unified Form Language (UFL), a domain-
specific language for the specification of variational formulations
of PDEs, is embedded within the programming language Python.
Variational formulations are then just-in-time compiled into C++
code for efficiency. The generated C++ code can be expected to out-
perform hand-written quadrature code since special-purpose PDE
compilers [1,28,42] are employed. UFL has built-in support for
automatic differentiation, derivation of adjoint equations, etc.,
which makes it particularly useful for complicated and coupled
PDE problems.

Several authors have addressed how object-oriented and gen-
erative programming can be used to create flexible libraries for
solving PDEs, but there are significantly fewer contributions deal-
ing with the design of frameworks on top of such libraries for
addressing multi-physics problems and coupling of PDEs
[45,31,33,23,54,40,50]. These contributions focus on how the
C++ or Fortran 90 languages can be utilized to solve such classes
of problems. This work builds on these cited works, but applies
Python as programming language and FEniCS as tool for solving
PDEs. Python has strong support for dynamic classes and object
orientation, and since variables are not declared in Python,

generative programming comes without any extra syntax (in con-
trast with templates in C++). Presented code examples from the
framework will demonstrate how these features, in combination
with FEniCS, result in clean and compact code, where the specifi-
cation of PDE models and linearization strategies can be ex-
pressed in a mathematical syntax.

FEniCS supports finite element schemes, including discontinu-
ous Galerkin methods [41], but not finite difference methods.
Many finite volume methods can be constructed as low-order dis-
continuous Galerkin methods using FEniCS [55]. Despite the devel-
opment of several successful methods for solving the NS equations
and LES models by finite element methods, finite element methods
have not often been applied to RANS models, though some re-
search contributions exist in this area [21,3,52,38].

The remainder of this paper is organized as follows: Section 2
demonstrates the use of FEniCS for solving simple PDEs and
briefly elaborates some key aspects of FEniCS. Section 3 presents
a selection of PDEs which form the basis of some common RANS
models. Finite element formulations of a typical RANS model and
the iteration strategies for handling nonlinear equations appear in
Section 4. The software framework for NS solvers and RANS mod-
els is described in Section 5. Section 6 demonstrates two applica-
tions of the framework and investigates the impact of different
types of linearizations. In Section 7 we briefly discuss the compu-
tational efficiency of the framework, and some concluding per-
spectives are drawn in Section 8. The code framework we
describe, cbc.rans, is open source and available under the Lesser
GNU Public license [8].

2. FEniCS for solving differential equations

FEniCS is a collection of software tools for the automated solu-
tion of differential equations by finite element methods. FEniCS in-
cludes tools for working with computational meshes, linear
algebra and finite element variational formulations of PDEs. In
addition, FEniCS provides a collection of ready-made solvers for a
variety of partial differential equations.

2.1. Solving a partial differential equation

To illustrate how PDEs can be solved in FEniCS, we consider the
weighted Poisson equation �r � (jru) = f in some domain X � Rd

with j = j(x) a given coefficient. On a subset of the boundary, de-
noted by oXD, we prescribe a Dirichlet condition u = 0, while on the
remainder of the boundary, denoted by oXR, we prescribe a Robin
condition �j@u/@n = a(u � u0), where a and u0 are given constants.

To solve the above boundary-value problem, we first need to
define the corresponding variational problem. It reads: find u 2 V
such that

F �
Z

X
jru � rv dx�

Z
X

fv dxþ
Z
@XR

aðu� u0Þv ds ¼ 0 8v 2 V ;

ð1Þ

where V is the standard Sobolev space H1(X) with u = v = 0 on oXD.
The function u is known as a trial function and v is known as a test
function. We can partition F into a ‘‘left-hand side’’ a(u,v) and a
‘‘right-hand side’’ L(v),

F ¼ aðu;vÞ � LðvÞ; ð2Þ

where

aðu;vÞ ¼
Z

X
jru � rv dxþ

Z
@XR

auv ds; ð3Þ

LðvÞ ¼
Z

X
f v dxþ

Z
@XR

au0v ds: ð4Þ

M. Mortensen et al. / Advances in Water Resources 34 (2011) 1082–1101 1083



Download English Version:

https://daneshyari.com/en/article/4526007

Download Persian Version:

https://daneshyari.com/article/4526007

Daneshyari.com

https://daneshyari.com/en/article/4526007
https://daneshyari.com/article/4526007
https://daneshyari.com

