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a b s t r a c t

Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-
averaged equations, of which the shallow water equations are the simplest example. We describe the
GeoClaw software that has been designed to solve problems of this nature, consisting of open source For-
tran programs together with Python tools for the user interface and flow visualization. This software uses
high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude–
longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incor-
porates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems.
Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Docu-
mentation and download information is available at www.clawpack.org/geoclaw.

Published by Elsevier Ltd.

1. Introduction

Many geophysical flow or wave propagation problems take
place over very large spatial domains, for which detailed three-
dimensional modeling of the fluid dynamics is not an efficient
option. Fortunately, two-dimensional depth-averaged equations
such as the shallow water equations often provide models that
are sufficiently accurate for many applications. Even with two-
dimensional models, however, it is often necessary to use adap-
tive mesh refinement (AMR) techniques in order to concentrate
grid cells in regions of interest, and to follow such regions as
the flow evolves. This is often the only efficient way to obtain
results that have sufficient spatial resolution where needed
without undue refinement elsewhere, such as regions the flow
or wave has not yet reached or points distant from the study
area.

We will briefly describe and illustrate the use of GeoClaw, an
open source research code that uses high-resolution finite vol-
ume methods together with adaptive mesh refinement to tackle
geophysical flow problems. In particular, this code has recently
been used together with the shallow water equations to model
tsunamis and dam-break floods. In Section 7 we give a brief
illustration of each. For other geophysical flow problems it
may be necessary to replace the shallow water equations by a
different set of depth-averaged equations. For example, in

modeling landslides, debris flows, or lahars, it is necessary to
incorporate terms modeling internal stress or pore pressure
(e.g. [13,41]). The software is written in a manner that allows
such extensions.

GeoClaw is based on the Clawpack software and is incorpo-
rated as a part of the general Clawpack distribution [30]. Claw-
pack (Conservation Laws Package) is an open source software
package that has been under development since 1994 and is
widely used for both teaching and research purposes. It is de-
signed to solve hyperbolic systems of partial differential equa-
tions (PDEs) in one, two, and three space dimensions. This
class of PDEs generally models wave propagation or fluid trans-
port, and a wide variety of physical problems give rise to math-
ematical models of hyperbolic form, including for example
compressible gas dynamics, linear and nonlinear acoustics, and
elastic wave propagation. The theory of nonlinear hyperbolic sys-
tems and a variety of applications are described in [27], which
also describes in detail the high-resolution finite volume meth-
ods implemented in Clawpack. Nearly all of the examples given
in this text are available as working examples via the Clawpack
website.

Clawpack is written in a formulation that allows the user to
specify the system of equations being solved by providing a
‘‘Riemann solver’’ as described in Section 3. The software incor-
porates a general form of AMR as reviewed briefly in Section 4,
in a manner that is easy to apply to many hyperbolic problems.
However, there are several difficulties that arise when solving
depth-averaged equations over realistic topography or bathyme-
try that required some substantial modifications to the general
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approach taken in Clawpack. The GeoClaw variant of the code
provides an implementation specific to such problems.

In particular, this code addresses the following issues:

� The flow takes place over topography or bathymetry that may
be specified via multiple data sets covering overlapping regions
at different resolutions. (Henceforth we will generally use the
term topography to refer also to bathymetry.)
� Some problems can be tackled on purely Cartesian grids, but

many applications require using longitude–latitude grids on
the earth’s surface.
� The flow is of bounded extent; the depth goes to zero at the

margins and the ‘‘wet–dry interface’’ is a moving boundary that
must be captured as part of the flow. This is handled by allow-
ing the fluid depth to be zero in some grid cells (‘‘dry cells’’).
Cells can change dynamically between wet and dry to model
evolving flows or inundation, and AMR can be used to provide
sufficient resolution of the shoreline or margin.
� There often exist nontrivial steady states (such as an ocean at

rest) that should be maintained exactly. Often the desired flow
or wave propagation is a small perturbation of this steady state,
as in tsunamis. For finite volume methods that conserve mass
by using the depth as a primary variable, this requires the use
of a ‘‘well-balanced’’ numerical method as discussed in Section
3.

These issues and the algorithms in GeoClaw are discussed in
more detail elsewhere [17,18,21,32,33] and here we give only a
brief summary of some key aspects of the numerical algorithms
(in Section 3) and the AMR procedure (in Section 4).

The computational core of GeoClaw is written in Fortran, but a
user interface written in Python is provided to simplify the setup of
a single run, or of a series of runs as is often required for parameter
studies, sensitivity studies, or probabilistic assessments of hazards.
Python and Matlab plotting tools are also provided for viewing the
results in various forms, either on the dynamically changing set of
adaptive grids or on a set of fixed grids, or in other forms such as
gauge plots of depth vs. time at fixed spatial locations. Some of
these software tools are described briefly in Section 6, and more
details can be found in the on-line documentation [31].

2. Depth-averaged mathematical models

The simplest depth-averaged set of fluid equations in two lat-
eral space dimensions are the shallow water equations

ht þ ðhuÞx þ ðhvÞy ¼ 0;

ðhuÞt þ hu2 þ 1
2

gh2
� �

x

þ ðhuvÞy ¼ �ghBx � Du;

ðhvÞt þ ðhuvÞx þ hv2 þ 1
2

gh2
� �

y

¼ �ghBy � Dv ;

ð1Þ

where u(x,y, t) and v(x,y, t) are the depth-averaged velocities in the
two horizontal directions, B(x,y, t) is the topography or bathymetry,
and D = D(h,u,v) is the drag coefficient. Coriolis terms can also be
added to the momentum equations. Eq. (1) have the form

qt þ f1ðqÞx þ f2ðqÞy ¼ wðq; x; yÞ; ð2Þ

where q = (h,hu,hv) is the vector consisting of the depth and
momentum of the fluid. In the absence of bathymetry (B � constant,
so Bx = By = 0) and drag (D � 0), the source terms would be zero
(w � 0) and these equations would express the conservation of
mass and horizontal momentum. We use conservative finite vol-
ume methods that in general conserve mass to machine precision
(since there is no source term in the mass equation) and would also

conserve momentum in the absence of source terms. This is true
even when AMR is applied, with the exception of cells that intersect
the coastline, as discussed further in Section 4.

Note that for an ocean at rest, in which h(x, t) + B(x,y) � 0 (sea
level) in all wet cells, the topography source terms exactly cancel
the derivatives of the hydrostatic pressure 1

2 gh2. Maintaining this
balance numerically is critical and is discussed in Section 3. The
drag term could have many forms; for the experiments reported
here we use

D ¼ gM2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þ

p
h5=3 ; ð3Þ

where M is the Manning coefficient, which we take to be 0.025.
(Typical values for the Manning coefficient for a given substrate
are empirically based. See [10] for a description and examples of
values used in various applications.)

Most tsunamis are generated by motion of the sea floor due to
an earthquake or submarine landslide, setting the entire water col-
umn in motion. The wave length is generally very long compared
to the depth of the ocean, and under these conditions the shallow
water equations (1) are generally appropriate. This has been con-
firmed in comparisons done by many groups (e.g. [50,25,34,44]),
although in some cases it is believed that dispersive terms may
need to be included (e.g. [22,43]), particularly when modeling tsu-
namis generated by submarine landslides, which typically have
short wavelengths (e.g. [35,48]). In Section 7 we illustrate the
use of GeoClaw for tsunami modeling using the shallow water
equations. Adding dispersive terms would generally require the
use of implicit time stepping algorithms, which are not yet imple-
mented in GeoClaw. Development of an implicit version of the
AMR routines in Clawpack is a current project and this may be pos-
sible in the future.

For other applications it is less clear that the classical shallow
water equations are sufficient. For shallow flow on steep terrain,
such as following a dam break for example, vertical acceleration
terms may need to be added to improve the model. However, the
simple equations (1) are often still used for many practical prob-
lems and can give fairly accurate results. In Section 7.3 we display
some dam-break results from [19]. Some possible extensions to
other depth-averaged systems of equations are mentioned in Sec-
tion 8.

3. Numerical methods

The algorithms used in GeoClaw are described in detail else-
where; see in particular [33]. Here we only give a brief summary
with pointers to other sources for further reading. GeoClaw is
based on Clawpack, which provides a general implementation of
‘‘wave-propagation algorithms’’, a class of high-resolution finite
volume methods in which each grid cell is viewed as a volume over
which cell averages of the solution variables q are computed. Log-
ically rectangular grids are used and Q n

ij denotes the cell average in
cell (i, j) at time tn. In each time step the cell averages are updated
by waves propagating into the grid cell from each cell edge. These
are Godunov-type methods in which the waves are computed by
solving a ‘‘Riemann problem’’ at each cell edge. The Riemann prob-
lem is an initial value problem using the shallow water equations
together with piecewise constant data determined by the cell aver-
ages of the dependent variables and topography on each side of the
interface. The advantage of Godunov-type methods is that they
provide a robust approach to solving problems with discontinuous
solutions, in particular shock waves that generally arise in the solu-
tion to nonlinear hyperbolic equations. In the shallow water equa-
tions, shocks are ‘‘hydraulic jumps’’ or ‘‘bores’’, as often arise in
practical flow problems. The Riemann problem defined at each cell
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