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a b s t r a c t

The availability of in situ measurements of precipitation in remote locations is limited. As a result, the use
of satellite measurements of precipitation is attractive for water resources management. Combined pre-
cipitation products that rely partially or entirely on satellite measurements are becoming increasingly
available. However, these products have several weaknesses, for example their failure to capture certain
types of precipitation, limited accuracy and limited spatial and temporal resolution. This paper evaluates
the usefulness of several commonly used precipitation products over data scarce, complex mountainous
terrain from a water resources perspective. Spatially averaged precipitation time series were generated or
obtained for 16 sub-basins of the Paute river basin in the Ecuadorian Andes and 13 sub-basins of the
Baker river basin in Chilean Patagonia. Precipitation time series were generated using the European Cen-
tre for Medium Weather Range Forecasting (ECMWF) 40 year reanalysis (ERA-40) and the subsequent
ERA-interim products, and the National Centers for Environmental Prediction/National Center for Atmo-
spheric Research reanalysis dataset 1 (NCEP R1) hindcast products, as well as precipitation estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The Tropical Rainfall
Measurement Mission (TRMM) 3B42 is also used for the Ecuadorian Andes. These datasets were com-
pared to both spatially averaged gauged precipitation and river discharge. In general, the time series of
the remotely sensed and hindcast products show a low correlation with locally observed precipitation
data. Large biases are also observed between the different products. Hydrological verification based on
river flows reveals that water balance errors can be extremely high for all evaluated products, including
interpolated local data, in basins smaller than 1000 km2. The observations are consistent over the two
study regions despite very different climatic settings and hydrological processes, which is encouraging
for extrapolation to other mountainous regions.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Precipitation is a key variable for water resources management
so reliable estimates of precipitation are crucial. The estimation of
precipitation in the Andes of Ecuador and Patagonia is assessed
here. In mountainous regions, deriving time series of spatially
averaged precipitation is often complicated by a significant spatial
and temporal variability in precipitation. This problem is further
aggravated by the very sparse rain gauge networks in mountainous
regions such as the Andes [1]. This can make the estimation of pre-
cipitation difficult. In order to improve the estimation of precipita-
tion, methods for estimating precipitation from satellite
measurements have been developed in recent years. Errors arise
in the satellite-derived precipitation from various sources. For

example, precipitation for products such as TRMM 3B42 and PER-
SIANN are estimated using infrared images. This can cause signifi-
cant underestimation of precipitation from low clouds as well as
false alarms from high but relatively thin clouds that are at low
temperatures [2]. For instance, warm frontal precipitation is asso-
ciated with higher cloud-top temperatures than convective precip-
itation [3]. Light snow has a maximum frequency around �16 �C
whereas all other precipitation types (including rain, freezing rain
and heavy snow) are bi-modal, with maximum precipitation at
�16 �C and �35 �C to �50 �C. Therefore precipitation estimation
from cloud-top temperature is affected by precipitation type [4].
Finally, the infrequent coverage of low earth polar orbiting satel-
lites means that short duration convective storms may be missed
by the satellites [5].

The appropriate scale to use spatially averaged precipitation
products should thus be large enough to reduce random errors
but retain topographical gradients [6,7]. The appropriate temporal
scale for precipitation products is region and basin specific.
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However, the assessment of precipitation products for a particular
region is dependent upon the local rain gauge network [8]. The
incorporation of uncertainty estimates in satellite precipitation
products would enable users to more appropriately use these data-
sets [9].

2. Summary of precipitation products

2.1. Satellite and composite products

The Tropical Rainfall Measurement Mission (TRMM) was
launched in November 1997 to orbit at a low altitude of about
320 km and to cover the entire tropics between 30�N and 30�S
twice a day [10]. However, this orbit was changed to 403 km in
2001 to reduce fuel consumption and to extend the observation
period [11].

Several algorithms [12–14] have been developed to make use of
data from the TRMM mission. The TRMM 3B42 algorithm has a
temporal resolution of 3 h and a spatial resolution of 0.25�. The
algorithm uses data from geostationary satellites with infrared
sensors that measure cloud-top temperatures and from low earth
orbiting satellites, which use microwave satellites to provide a
more direct estimate of precipitation [14].

TRMM 3B42 is produced by combining data from the TRMM
2A25 precipitation radar (PR) with infrared images to produce an
optimised data series [14]. However, the TRMM satellite has a poor
temporal resolution due to the low sampling frequency of the sa-
tellite. TRMM orbits the Earth 16 times a day and so flies over most
tropical locations once or twice a day [15]. Therefore the monthly
totals from TRMM are used to calibrate the infrared precipitation
estimates from the Geostationary Operational Environmental Sys-
tem (GOES) series, which has a temporal resolution of 3 h [11]. The
approach taken is thus to use the more frequent but indirect infra-
red estimates calibrated using the more accurate but infrequent
microwave observations [16,17]. However, there are uncertainties
associated with the estimation of precipitation from cloud-top
temperature. Parameters such as radiance thresholds, required to
determine whether precipitation occurs, vary markedly from one
situation to another [11]. Precipitation estimation from cloud top
temperature is generally worse over continents than the oceans,
particularly for low precipitation amounts [18]. TRMM 3B42 has
been found to provide a reasonable performance at monthly
timescales.

The TRMM 3B42 research product (version 6) is created by scal-
ing the real time TRMM 3B42 series to the monthly 1� grid Global
Precipitation Climatology Centre (GPCC) data derived from rain
gauges to produce an optimised data series [14]. TRMM 3B42 has
been found to provide a reasonable performance at monthly time-
scales. However, it struggles to correctly identify and reproduce
moderate and light precipitation events on short timescales. Fur-
thermore, it is possible that on occasion this monthly bias removal
may cause high precipitation rates to be underestimated and low
precipitation to be overestimated [16].

PERSIANN uses an adaptive neural network algorithm to com-
bine high frequency (48 readings a day) geosynchronous satellite
based gridded infrared images (including GOES-8, GOES-9, GOES-
10, GMS-5, MetSat-6, MetSat-7) and low frequency (1–2 readings
a day) TRMM 2A12 instantaneous rain, which is derived from the
TRMM TMI microwave imager [19,20]. Thus the final precipitation
estimates are derived from the infrared data but are adjusted to be
consistent with the TRMM and TMI derived precipitation [15,21].
PERSIANN has a temporal resolution of 3 h and is on a spatial grid
of 0.25� between 50�N and 50�S. The neural network scans a 5 � 5
moving window of infrared pixels, surrounding each central pixel
in turn. Five features are extracted from the pixels and are classi-

fied into groups associated with different cloud surface character-
istics. For each group, a multivariate linear function relates the
infrared values to rain rates [15]. The adaptive neural network
means the product can adapt its calibration for different precipita-
tion regimes [8].

2.2. Reanalysis hindcast products

We also use the reanalysis hindcast products ERA-40, ERA-
interim and NCEP R1. NCEP R1 hindcast data are available from
1948 to present on a 6 hourly timestep and a 2.5� grid. ERA-40 data
is available on a 6 hourly basis from 1957–2002 with a resolution
of around 2.5�. This has now been superseded by ERA-interim,
which is available on a 6 hourly basis from 1989 – date and has
a resolution of around 1.5�.

Gridded hindcast products such as ERA-40 and NCEP R1 are the
weather model assimilated outputs from weather observations
around the globe for a given timestep. Weather models are usually
run to produce forecasts for hours and days into the future using
observations from satellites, radars and weather balloons for
numerous weather variables including temperature, relative
humidity and atmospheric vapour pressure. However for hindcast
products, only historical observations are used, to produce a new
forecast. The model is re-started at every timestep with new his-
torical observations and is not allowed to run in forecast mode.
Long time-series of gridded weather model outputs can then be
constructed using the same weather model through time. As newer
weather models are developed, they can be re-run using the histor-
ical observations to construct a data series that is not biased due to
a change in model structure. However, although the model is fro-
zen, the data that are available have changed significantly over
time, with the inclusion for the first time in 1972 of satellite data,
temperature profilers in 1973 and microwave channels for atmo-
spheric water vapour over the oceans in 1987 [22].

2.3. Gridded observational products

Long term average precipitation gridded datasets such as the
TRMM climatology [23], WorldClim [24] and Climate Research
Unit (CRU) CL 2.0 [25] products are also considered. The CRU CL
2.0 data are obtained from rain gauge observations and are avail-
able on a 10’ grid for all land areas excluding Antarctica. The data
set consists of mean monthly climate variables for 1961–1990
including precipitation, wet-day frequency, temperature, relative
humidity and sunshine duration. Data were interpolated using a
thin-plate spline methodology and predictor variables of latitude,
longitude and elevation. Local topographic variations in precipita-
tion that are not dependent upon one of the three independent
variables (latitude, longitude and elevation) are assumed to be
noise and are not resolved in this dataset. This may cause errors
in the dataset for data sparse areas. South America was highlighted
as an area with high errors [25].

The WorldClim data is calculated from rain gauge data and is
available on a 30 arc s grid. The dataset extends from 1950–2000
where possible. This time period was used because it enabled the
inclusion of more rain gauges than the period 1961–1990, with
the constraint that only rain gauges with at least 10 years of data
were included. The differing time periods assume that there was
no change in average precipitation during this time. The dataset
consists of monthly average, min and max precipitation and max
temperature. The interpolation of precipitation was undertaken
using a thin-plate smoothing spline algorithm using latitude, lon-
gitude and elevation and independent variables. The WorldClim
dataset uses 57% more rain gauges worldwide than the CRU CL
2.0 [25] dataset, especially in South America where data from the
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