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a b s t r a c t

Vegetation in rivers, estuaries and coastal areas is often submerged and highly flexible. The study of its
interaction with the ambient flow environment is important for the determination of the discharge
capacity, morphological characteristics and ecological conditions of the water course where it grows.
In this work the hydrodynamics of submerged flexible vegetation with or without foliage is investigated
by using a 3D numerical model. Flexible vegetation is modeled by momentum sink terms, with the veloc-
ity-dependent stem height determined by a large deflection analysis which is more accurate than the pre-
viously used small deflection analysis. The effect of foliage on flow resistance is expressed in terms of the
change in the product of the drag coefficient and the projected area, which is supported by available
experimental data. The computed results show that the vertical profiles of the mean horizontal velocity
and the vertical Reynolds shear stress are correctly simulated. The temporal variation of the stem deflec-
tion follows closely that of the velocity and the ‘Honami’ phenomenon can be reproduced. The numerical
simulations also confirm that the flexibility of vegetation decreases both the vegetation-induced flow
resistance force and the vertical Reynolds shear stress, while the presence of foliage further enhances
these reduction effects.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Vegetation contributes to the sustainable development of aqua-
tic environments. It provides food and shelter to many organisms
and controls the ecological system in rivers, estuaries and coastal
areas. In estuarine and coastal areas, vegetation is often submerged
and with high flexibility. It will deflect and interact with the ambi-
ent flow environment. An accurate prediction of the interaction be-
tween the water flow and the flexible vegetation will be required
for the determination of the discharge capacity, morphological
characteristics and ecological conditions of the water course where
the vegetation grows.

Numerical models for flow through vegetation with rigid stems
have been developed and used extensively and can be subdivided
into RANS (Reynolds Averaged Navier–Stokes equations) models
and LES models. For RANS models, Shimizu and Tsujimoto [1],
Lopez and Garcia [2], and Leu et al. [3] employed the two-equation
k–e closure of turbulence; Naot et al. [4] and Choi and Kang [5]
used the multi-equation anisotropic Reynolds stress closure of tur-
bulence. For LES models, Patton et al. [6] used the one-equation k-l
sub-grid turbulence closure, Cui and Neary [7] used the Smargorin-

sky sub-grid scale turbulence closure with dynamic adjustment of
the closure coefficient.

For flexible vegetation with prismatic stems and relatively high
stiffness, its deflection can be predicted by the small deflection
analysis of cantilever beam [8]. Kutija and Hong [9] developed a
one-dimensional model utilizing Timoshenko’s theory to
determine the bending of the vegetation. The work was continued
by Erduarn and Kutija [10] and a quasi-three-dimensional method
was developed. Velasco et al. [11] employed the classical elastic
beam equation to compute the deflection of vegetation stems with
moderate flexibility. A 1D model has been developed to compute
the vertical profiles of the velocity and Reynolds stress. Ikeda
et al. [12] developed a 2D LES model to simulate the wavy motion
of flexible vegetation. In the model a complex ‘plant grid’ is used to
track the movement of each stem and the equation of motion of
each flexible stem is solved directly. This approach is sophisticated
but computationally expensive.

Physical experiments on the determination of flow resistance
due to vegetation with foliage have been carried out by some
investigators. Fathi-Maghadam and Kouwen [13] and Kouwen
and Fathi-Maghadam [14] measured the drag forces on several
species of vegetation, and related the product of the drag coeffi-
cient Cd and the leaf area index (A/a, A = total flow projected area
of vegetation, a = horizontal area occupied by the vegetation) to
the flow velocity. A decreasing trend of the parameter CdA/a with
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the flow velocity was obtained. James et al. [15] attempted to iso-
late the effects of drag coefficient and projected area by construct-
ing models of artificial stems with leaves set in fixed and deformed
shape in accordance with the observations of flows through real
reeds and bulrushes. By defining the drag coefficient in terms of
the true projected area, the value of the drag coefficient is less
varying. Wilson et al. [16] directly measured the drag forces on
individual pieces of vegetation to determine the contribution of
the foliage of a plant to the total drag force on the plant. They ob-
served the decreasing trend of the parameter CdA with the flow
velocity. This was explained by that the highly flexible foliage will
streamline with the flow and reduce the overall drag coefficient as
well as the projected area.

Extensive field and laboratory studies of flows in vegetated
watercourses have been carried out recently [17–26]. In particular,
it was observed that under certain flow conditions organized ver-
tical flow structures occur at the tip of the vegetation. The interac-
tion between the flow and the flexible stems of the vegetation
produces a wavy motion of the plants called ‘Honami’ [12] or
‘Monami’ [27]. Ikeda and Kanazawa [28] and Ghisalberti and Nepf
[27] showed that Honami is due to the Kelvin–Helmholtz instabil-
ity of flow at the inflection point of the vertical profile of the mean
velocity located at the tip of the vegetation. The instability gener-
ates coherent vortices which are transported downstream and
cause wavy motion of the vegetation.

For vegetation with high flexibility the small deflection analysis
may not be accurate enough to predict its deflection under water
flow. In this work a large deflection analysis is employed in which
the Euler–Bernoulli Law for the bending of a slender beam is used
to determine the large deflection of a plant stem. The resulting
nonlinear equation is solved iteratively by a finite difference
scheme. The fluid load–deflection relationship is obtained a priori
and input into a 3D model. The time and space varying velocity
field is then computed and the interaction of the flexible vegeta-
tion with the fluid environment is studied.

2. Large deflection of a plant stem

It is assumed that a piece of vegetation can be represented by an
inextensible non-prismatic slender beam of length L. The water flow
produces variable distributed loads qx(s) on the beam along the x
direction (Fig. 1). The equilibrium of forces and momentum gives
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where M = moment, d = deflection in x-direction, s = local ordinate
along the beam. The Euler–Bernoulli law states that the local bend-
ing moment is proportional to the local curvature

MðsÞ ¼ EIðsÞ
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where E = flexural stiffness (N/m2), I = second moment of area (m4).
Combining Eqs. (1) and (2), a fourth order nonlinear equation in d is
resulted
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The equation can be solved by using a quasi-linearized central finite
difference scheme. Details can be found in AL-Saddar and AL-Rawi
[29].

The vegetation stem is assumed inextensible, the total length of
the stem remains constant (=L). By dividing the stem into m equal
segments, with segment length Ds constant, the z-ordinate of the
ith node is given by
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j¼1
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The deflected height of the stem is then equal to zm.
To verify the model, experimental data obtained by Belendez

et al. [30] for the large deflection of a cantilever beam under a com-
bined load consisting of a uniform distributed load and a concen-
trated load F at the free end are used. The parameters are:
L = 0.4 m, I = 1.33 � 10�13 m4, E = 200 GPa, q(s) = 0.758 N/m, the
free-end concentrated load varies between 0 and 0.588 N. In the
computation the beam is subdivided into 60 grids. The concen-
trated load is represented by an equivalent distributed load at
the end point. The measured and computed free-end deflections
are tabulated in Table 1. It can be seen that the differences between
the two set of results are within 2%, with the average value of 1%.

In a 3D computational region, it is not efficient to directly com-
pute the large deflection of individual stems since the vegetation
density can be very high. Instead, an empirical approach is adopted
in this study. For a beam subjected to uniform lateral distributed
load q(z) = qx(s)ds/dz, the dimensional analysis gives the following
expression

h
L
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qL3

EI

 !
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where h = deflected height of the beam. The empirical form of the
function / can be obtained by using the above model to compute
a sufficient large number of cases with different values of the
non-dimensional parameter qn = qL3/EI. The results are plotted in
Fig. 2 (constant u profile) and a piecewise sixth order polynomial
is used to approximate the function / within the practical range
of values of qL3/EI. The best-fit polynomial is given as follows.

For qn 6 100,

Fig. 1. Definition sketch of large deflection of a beam subjected to distributed
loading.

Table 1
Large deflection of a cantilever beam under combined loading.

F (N) d (m) experimental [30] d (m) computed Difference (%)

0.000 0.089 0.0895 0.6
0.098 0.149 0.1501 0.7
0.196 0.195 0.1940 0.5
0.294 0.227 0.2251 0.8
0.392 0.251 0.2475 1.4
0.490 0.268 0.2641 1.5
0.588 0.281 0.2767 1.5
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