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a b s t r a c t

This paper examines the potential for improving Soil and Water Assessment Tool (SWAT) hydrologic pre-
dictions of root-zone soil moisture, evapotranspiration, and stream flow within the 341 km2 Cobb Creek
Watershed in southwestern Oklahoma through the assimilation of surface soil moisture observations
using an Ensemble Kalman filter (EnKF). In a series of synthetic twin experiments assimilating surface soil
moisture is shown to effectively update SWAT upper-layer soil moisture predictions and provide moder-
ate improvement to lower layer soil moisture and evapotranspiration estimates. However, insufficient
SWAT-predicted vertical coupling results in limited updating of deep soil moisture, regardless of the
SWAT parameterization chosen for root-water extraction. Likewise, a real data assimilation experiment
using ground-based soil moisture observations has only limited success in updating upper-layer soil
moisture and is generally unsuccessful in enhancing SWAT stream flow predictions. Comparisons against
ground-based observations suggest that SWAT significantly under-predicts the magnitude of vertical soil
water coupling at the site, and this lack of coupling impedes the ability of the EnKF to effectively update
deep soil moisture, groundwater flow and surface runoff. The failed attempt to improve stream flow pre-
diction is also attributed to the inability of the EnKF to correct for existing biases in SWAT-predicted
stream flow components.

Published by Elsevier Ltd.

1. Introduction

Soil moisture plays an essential role in the exchange of energy
and water within the soil–vegetation–atmosphere continuum.
Successful initialization and modeling of soil moisture is crucial
for the prediction of hydrologic processes including runoff, ground
water recharge and evapotranspiration. Nevertheless, accurate
estimation of soil moisture is typically limited by uncertainties in
model inputs, parameter values and imperfect model physics
regarding subsurface processes. Given the lack of a dense soil
monitoring network in most regions, satellite observations are
the most viable solution to improving the representation of soil
moisture states in land surface and hydrologic models.

During the past decade a range of data assimilation techniques
have been developed to optimally merge land model estimates
with satellite observations to reduce modeling errors arising from
various sources (e.g. [1–3]). At their core, these approaches provide
a methodology for properly updating error-prone model predic-
tions with incomplete and uncertain observations of model states.
A variety of assimilation approaches have been proposed for this

task. However, in recent years the Ensemble Kalman filter (EnKF)
has emerged as (arguably) the most popular choice for land data
assimilation. The EnKF is based on generating a Monte Carlo
ensemble of model predictions in order to propagate the
background uncertainty information required by the Kalman filter
update equations (see Section 2.1 below for further details). Rela-
tive to competing approaches, the EnKF offers the benefits of easy
implementation, flexibility regarding the nature of modeling error,
computational efficiency and demonstrated robustness when ap-
plied to land surface models [4,5]. However, most hydrologic EnKF
applications have focused on the estimation of soil moisture pro-
files and surface energy fluxes in land surface models used in
numerical weather prediction. In contrast, relatively little data
assimilation work has been conducted for rainfall-runoff and/or
stream flow models commonly applied to water resource quantity
and quality studies. The few studies that have been completed gen-
erally show some potential for improving runoff prediction by
assimilating surface soil moisture and/or stream flow observations
(e.g. [6–10]).

Studies examining the assimilation of surface soil moisture are
highly relevant given the expected wealth of global soil moisture
data products created by the current ESA Soil Moisture Ocean
Salinity mission (SMOS) [11] and the upcoming NASA Soil Moisture
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Active/Passive (SMAP) mission [12]. Both instruments will provide
near-daily estimates of surface (0–5 cm) soil moisture – albeit at a
relatively coarse spatial resolution of between 10 and 40 km.
The ultimate value of these data products for improving water
quality and quantity modeling is currently unknown.

The Soil and Water Assessment Tool (SWAT) is a physically-
based, semi-distributed continuous watershed model developed
to predict the impact of land management practices and climatic
change on water, sediment and agricultural chemical yields over
long periods of time [13,14]. SWAT has been widely applied to
hydrologic (e.g. flow prediction, snow/runoff/groundwater/soil
water dynamics, irrigation management) and water quality assess-
ment (non-point source modeling, sediment yield, pollutant fate,
best agricultural management practices, conservation effects)
problems. Gassman et al. [15] provides a detailed review of the
development and applications of SWAT. Despite its widespread
and successful application to a number of critical water resources
applications, SWAT is based on a much simpler representation of
surface energy processes and the vertical redistribution of water
within the soil column than land surface models used in past EnKF
applications (see e.g. [16,17,2]). Given the importance of vertical
processes that couple the surface to deeper model states in surface
soil moisture data assimilation [18,19], it is unclear how effective
existing land data assimilation techniques are when applied to
SWAT. These issues must be addressed before SMOS and SMAP
data products can be leveraged to enhance water resource applica-
tions currently addressed by SWAT modeling.

The objective of this study is to evaluate the potential of
improving SWAT’s hydrologic predictions (i.e. root-zone soil mois-
ture, evapotranspiration, runoff and stream flow) within the
341 km2 Cobb Creek Watershed in southwestern Oklahoma via
the EnKF-based assimilation of surface soil moisture observations.
The organization of this paper is as follows. Section 2 presents a re-
view of the SWAT model and EnKF methodology, as well as details
of the data used and a description of the design for the data assim-
ilation experiments. Subsequent results are presented for two sep-
arate data assimilation experiments. Results in Section 3.1 are
derived from a set of synthetic twin data assimilation experiments
in which artificial observations are generated using the SWAT
model. Results in Section 3.2 are analogous except for the more
demanding case of assimilating actual soil moisture observations
obtained within the Cobb Creek Watershed. Section 4 provides a
brief summary and discussion of key results.

2. Methods and data

This section gives a brief description of the EnKF algorithm and
summarizes basic SWAT physics with an emphasis on processes
controlling runoff generation and the vertical redistribution of soil
water. Methodologies for both the synthetic twin and real-data
assimilation experiments are also presented.

2.1. Ensemble Kalman filter

As discussed above, the EnKF is a sequential data assimilation
method evolved from the standard Kalman filter [20] that has been
demonstrated to efficiently handle the assimilation of observations
into moderately nonlinear models [5]. It is based on an ensemble
generation of model states produced by adding Monte Carlo noise
to model states and/or forcings to approximate the model forecast
state error covariance matrix in order to optimally merge model
predictions with observations.

Letting Y(t) be a vector of background model states at time t and
F a potentially non-linear land surface model, the continuous fore-
casting of Y(t) via F can be expressed as:

dYðtÞ
dt
¼ F½YðtÞ;w� ð1Þ

where the random noise term w represents the aggregate impact of
modeling errors arising from various sources including: inadequate
model physics, poorly calibrated parameters, and noisy forcing data.

Conversely, let Zk be the observation vector collected at discrete
time tk and the observation process is derived as:

Zk ¼ Mk½YðtkÞ� þ vk ð2Þ

where M is the observation operator that relates the true state to
the measured variable and v reflects the observation noise. The
noise term v is assumed to be a mean-zero, Gaussian random vari-
ables with variance Cv and statistically independent of w.

The EnKF is based on minimizing the impact of w via the consid-
eration of independent observations Z related to land surface states
contained in Y. If F and M are linear and stated assumptions con-
cerning v and w are met, then the optimal updating of Y replicates
given the presence of an observation Z at time k can be expressed
as:

Yiþ
k ¼ Yi�

k þ Kk Zk þ ei
k �Mk Yi�

k

� �h i
ð3Þ

where:

Kk ¼ ½CYMðCM þ CvÞ�1�t¼tk
ð4Þ

and e is a mean-zero, random variable independently sampled (for
each ensemble member) from a mean-zero, Gaussian distribution
with variance Cv (see [21]). Variables Yi+ and Yi� in (3) are state vec-
tors for the ith ensemble member before and after updating, respec-
tively. Kk in (4) is the Kalman gain that defines the weights of
measurement and model estimation and is calculated from the fore-
cast error covariance matrix CM of the measurement predictions
Mk[Y(tk)] and the forecast cross covariance CYM between any given
state and Mk[Y(tk)]. A single deterministic EnKF prediction (i.e. the
‘‘analysis’’) is then acquired by averaging model state predictions
across the ensemble. The analysis of other model forecast variables
(e.g. stream flow) is defined in the same manner.

2.2. Model description

SWAT is a physically-based, semi-distributed watershed model
widely used to assess the impact of land management practices
and climatic changes on long-term water, sediment and pollutant
yields. A watershed is geographically delineated into a number of
smaller sub-basins where flow routing is simulated. The sub-ba-
sins are further subdivided into hydrologic response units (HRU’s)
that consist of uniform land use, soil and management practices.
While the area-fraction of a sub-basin covered by each HRU is ac-
counted for, the exact location of each HRU is not explicitly repre-
sented. The HRU is a basic unit in SWAT where fundamental
surface processes such as flow generation, soil water dynamics,
crop growth, evapotranspiration, sediment and nutrient transport
are simulated.

2.2.1. Flow generation
Total SWAT stream flow is calculated as

Q ¼ Qsurf þ Q lat þ Qgw ð5Þ

where Q is total stream flow of the day (mm H2O), Qsurf is surface
runoff (mm H2O), Qlat is subsurface lateral flow (mm H2O) and
Qgw is groundwater flow (mm H2O). Surface runoff, lateral flow
and groundwater flow are generated from each HRU and aggregated
at the main channel of each sub-basin, then routed to obtain the to-
tal stream flow for the watershed.
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