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With well-determined hydraulic parameters in a hydrologic model, a traditional data assimilation
method (such as the Kalman filter and its extensions) can be used to retrieve root zone soil moisture
under uncertain initial state variables (e.g., initial soil moisture content) and good simulated results
can be achieved. However, when the key soil hydraulic parameters are incorrect, the error is non-Gauss-
ian, as the Kalman filter will produce a persistent bias in its predictions. In this paper, we propose a
method coupling optimal parameters and extended Kalman filter data assimilation (OP-EKF) by combin-

Ke?’ Won.js" ing optimal parameter estimation, the extended Kalman filter (EKF) assimilation method, a particle
Soil moisture content L . . ) . . h .
Root zone swarm optimization (PSO) algorithm, and Richards’ equation. We examine the accuracy of estimating

root zone soil moisture through the optimal parameters and extended Kalman filter data assimilation
method by using observed in situ data at the Meiling experimental station, China. Results indicate that
merely using EKF for assimilating surface soil moisture content to obtain soil moisture content in the root
zone will produce a persistent bias between simulated and observed values. Using the OP-EKF assimila-
tion method, estimates were clearly improved. If the soil profile is heterogeneous, soil moisture retrieval
is accurate in the 0-50 cm soil profile and is inaccurate at 100 cm depth. Results indicate that the method
is useful for retrieving root zone soil moisture over large areas and long timescales even when available
soil moisture data are limited to the surface layer, and soil moisture content are uncertain and soil
hydraulic parameters are incorrect.
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1. Introduction recent years, several research efforts have focused on the develop-
ment of remote-sensing techniques to characterize the spatial and
temporal variability of soil moisture over large regions

[4,24,23,33]. Many of these studies have successfully demon-

Soil moisture content in the root zone is an important state var-
iable in many aspects of studies in hydrology, meteorology and

agriculture. In hydrological research, soil water content plays a
key role in the partitioning of rainfall into infiltration and runoff
([54,30,56]). In meteorological research, soil water content has a
crucial effect on the partitioning of available energy at the earth’s
surface into sensible and latent heat exchange with the atmo-
sphere [29]. In agriculture, soil moisture is essential for proper
water resource management, irrigation scheduling, crop produc-
tion, and chemical monitoring [18,19,31]. Obtaining accurate soil
moisture data sets at large scales over a long period is not an easy
task [40]. Measurements of in situ soil moisture are usually expen-
sive and time-consuming. Moreover, there are no large-scale soil
moisture observational networks available for measuring soil
moisture at high temporal frequency at multiple soil depths. In
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strated that the use of passive microwave remote sensors can ob-
tain soil moisture content [2,16,17]. Though much progress has
been made, these developments have been limited in that they
characterize soil moisture in a rather shallow layer, variously esti-
mated between 2 and 20 cm deep, but mostly 5 cm deep [26].

To estimate soil moisture profile (or root zone soil moisture)
with the help of surface soil moisture observations is an important
research problem. Jackson [25] described four basic approaches
using surface soil moisture data to estimate soil moisture through-
out a soil profile. However, current research emphasis has focused
on the assimilation of remotely sensed surface soil moisture data
into different types of hydrological models. Analysis using data
assimilation provides time-dependent spatially distributed soil
moisture content estimates that can be updated whenever new
data become available. There are many alternative assimilation
methods, such as direct insertion, Kalman filters [52,42], and
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H-infinity filters [53]. The application of these assimilation meth-
ods to accurately estimate soil moisture in a profile is a relatively
new and challenging area of investigation.

In combining assimilation methods with hydrological models
and climatic models to retrieve root zone soil moisture in a soil
profile, soil hydraulic parameters are essential inputs to most
hydrological and climatic models [34,35]. However, these essential
soil hydraulic parameters are not always available for practical
applications. On the other hand, during the past two decades,
much effort has been directed toward the estimation of hydrologic
model parameters (calibration) to improve the forecast accuracy.
Only a few studies have been performed based on dual state-
parameter estimation of hydrological models (or flood forecast
models), [39,49,8,14]. In the study of soil moisture forecasting,
most data assimilation methods examine only how to update the
state variables (soil moisture content), and studies exploring
how to update soil hydraulic parameters are neglected. When
the key parameters are incorrect, the assimilation results may be
affected and the assimilation process may fail. For example, a main
assumption of the Kalman filter is that the model errors are zero
mean and uncorrelated in time. This assumption is commonly vio-
lated in hydrological applications, and the model can be biased.
Especially when a key parameter (such as the saturated hydraulic
conductivity, K;) is largely overestimated, the Kalman filter-based
assimilation approach is not sufficient for removing persistent bias
in the soil water balance [37]. Indeed, the filter assumption (mean
zero of the model error) is violated. Montaldo et al. [38] examined
the effect of uncertain saturated hydraulic conductivity (K;) on
assimilation performance. They concluded that the erroneous
estimation of K; may bring about a long-term error for simulated
results. This error is not removed by using the assimilation meth-
od. Das and Mohanty [9] concluded that uncertainties introduced
by soil hydraulic properties caused suboptimal performance of a
retrieval model using the ensemble Kalman filter technique. Mor-
adkhani et al. [39] showed that good estimates of the parameters
and state variables are needed to enable the model to generate
accurate forecasts. In their paper, they studied a dual state-param-
eter estimation approach based on the ensemble Kalman filter [14]
for sequential estimation of both parameters and state variables of
a hydrologic model. On the other hand, in Chen and Zhang's [6] pa-
per, the ensemble Kalman filter approach is used for continuous
updating model parameters and motel state variable with large
ensembles sizes. In van Der Merwa and Wan's [49], the square root
unsigned Kalman filter (SR-UKF) is used for continuous updating
model parameters and model state variables. These studies,
however, do not apply for soil moisture forecasting and research
related to simultaneously estimating soil parameters and state
variables at the same time is sparse.

In this paper, we develop a method of coupling of optimal
parameters and extended Kalman filter data assimilation
(OP-EKF) by combining an inverse modeling-based state-parame-
ter assimilation strategy and a state variable soil moisture assimi-
lation method. This is wunlike previous near-surface data
assimilation procedures where root zone soil moisture is being re-
trieved [12,15,52,20,11,10]. The methodology has two steps which
are necessary for capturing the persistent model bias: (1) it
dynamically adjusts (i.e., calibrates) the needed soil hydraulic
parameters at the root zone at a coarse time scale, by deriving
the needed soil hydraulic parameters by combining a PSO algo-
rithm [28,7] and a hydrological model, then inserting the obtained
soil hydraulic parameters into the hydrological model; and (2) it
simulates the root zone soil moisture content by assimilating sur-
face soil moisture data using the EKF method at the observation
time scale. In this study, we verify the effectiveness of this method
by using field data on soil moisture collected from the Meiling
experimental station, China. Our study was designed to test the

coupling optimal parameters and extended Kalman filter data
assimilation method under “real-world” conditions and to evaluate
the value of using actual field data. Our work also explores the pos-
sibility of retrieving a root zone soil moisture profile under some
unknown soil hydraulic parameters and uncertain initial soil mois-
ture content.

2. Methodology
2.1. Study area description

Field experiments were conducted at the Meiling experimental
watershed (31°0’N, 119°1’E), Jiangsu Province, China. The wa-
tershed area is about 0.7 km?, located about 9 km west of Tai Lake.
The average annual rainfall over the last 30years is about
1150 mm, and average annual temperature is about 15.5°C.
Long-term soil moisture observation equipment was installed on
a hillside in the upper part of the watershed. The vegetation on
the hillside is chestnut woodland and canopy cover is high. The
root depth is about 100 cm. There are forbs on the ground in
summer. The soil physical particle size values at all depths were
measured by the laser diffraction method (Table 1).

In the experimental area, there are four frequency domain
reflector (FDR) soil moisture sensors at 5, 30, 50 and 100 cm
depths. Voltage readings (mV) were recorded every hour. Volu-
metric soil moisture content was computed according to the
“voltage-volume moisture content curve”, which is determined
in accordance with measured samples. Data measurements were
taken from November 16, 2006 to November 7, 2007. The simu-
lation performed begins at July 1, 2007 (DOY 182), and ends at
August 31, 2007 (DOY 243). In the simulation cycle, there were
four days (DOY 218-221) in which the equipment was
malfunctioning.

In addition to the measurements of soil moisture, some meteo-
rological observations were recorded, including: wind direction,
wind speed, E601-water surface evaporation, temperature, humid-
ity, vapor pressure deficit, saturated vapor pressure deficit, relative
humidity, solar radiation, precipitation, and soil temperature at
different depths.

2.2. Governing equation

The system equations in the assimilation scheme are based on
the one-dimensional (1-D) Richards’ equation that describes mois-
ture fluxes in the unsaturated zone of a homogeneous and isotropic
soil. The 1-D mixed Richards’ equation can be written as:

%:%[K(h)@_’;_l)] _S(t,z,h) (1)

where 0 is the soil water content (cm® cm™3), z is the soil depth
(cm), h is the soil water pressure head (cm), K is the unsaturated
hydraulic conductivity (cmd~!), and S(t,z,h) is the root water
uptake (cmd~!). The van Genuchten [47] relationships are used to
express the dependence between K and the state variable (either
pressure head h or moisture content 0) of interest:

Table 1
The average soil physical properties with depth in the experimental plot.

Depth (cm) % Sand % Silt % Clay Bulk density (g cm~>)
0-5 13.7 70.6 15.7 1.35
5-18 13.7 70.7 15.6 1.39
18-54 14.9 67.7 17.4 1.26
54-74 17.5 74.9 7.6 1.41
74-120 18.6 75.0 6.4 1.29

Clay, silt and sand were defined as particles <0.002, 0.002-0.05 and 0.05-2.0 mm in
diameter, respectively.
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