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a b s t r a c t

A multilayer lattice Boltzmann (LB) model is introduced to solve three-dimensional wind-driven shallow
water flow problems. The multilayer LB model avoids the expensive Navier–Stokes equations and obtains
stratified horizontal flow velocities as vertical velocities are relatively small and the flow is still within
the shallow water regime. A single relaxation time BGK method is used to solve each layer coupled by
the vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to obtain
flow velocities. The main advantage of using the LBM is that after selecting appropriate equilibrium dis-
tribution functions, the LB algorithm is only slightly modified for each layer and retains all the simplic-
ities of the LBM within the high performance computing (HPC) environment. The performance of the
parallel LB model for the multilayer shallow water equations is investigated on CPU-based HPC environ-
ments using OpenMP. We found that the explicit loop control with cache optimization in LBM gives bet-
ter performance on execution time, speedup and efficiency than the implicit loop control as the number
of processors increases. Numerical examples are presented to verify the multilayer LB model against ana-
lytical solutions. We demonstrate the model’s capability of calculating lateral and vertical distributions of
velocities for wind-driven circulation over non-uniform bathymetry.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade, the lattice Boltzmann (LB) method or LBM
has become a powerful numerical method for simulating fluid
flows [1]. The method is based on statistical physics and simulates
fluid flow by tracking the evolution of distribution functions of
fluid particles in discrete phase (velocity) space. The essential ap-
proach in the LB method lies in the recovery of macroscopic fluid
flows from the microscopic flow behavior of the particle move-
ment. The actual particles are not tracked, but their collective
behavior is tracked through the mesoscopic evolution of particle
distributions. The basic idea is to replace the nonlinear differential
equations of macroscopic fluid dynamics by a simplified descrip-
tion modeled on the kinetic theory of gases [2]. The benefit of this
description is that the LBM does not involve the solution of a global
system of equations, but instead has locality, which makes it very
suitable for parallel computing. Recently, this has become an
important feature for numerical methods as high performance
computing (HPC) systems are currently being designed to solve
large-scale engineering problems.

The LBM was first developed to solve the equations of hydrody-
namics governed by the Navier–Stokes equations based on the ki-
netic theory of gases described by the Boltzmann equation [3]. The
method has been shown to be effective for simulating flows in
complicated geometries on parallel computer architectures [4].
Furthermore, the method has become an alternative to other
numerical methods, e.g. finite difference, finite element, and finite
volume methods, in computational fluid dynamics. Due to its
attractive features, recently the LBM has found a wide range of
applications including wind-driven ocean circulation [5,6], discon-
tinuous flows with shocks [7,8], and tidal flows on complex geom-
etries with irregular bathymetry [9].

Even with increasing interest in using the LBM to solve the
shallow water equations, its application is limited to two-dimen-
sional planar problems [10–12]. When stratified horizontal veloc-
ities in depth are of interest, solving the depth-averaged shallow
water equations is not sufficient. However, a full three-dimen-
sional model of the Navier–Stokes equations is computationally
expensive and does not yield much more information as the ver-
tical velocities are relatively small and the flow is still within the
shallow water flow regime. In order to take advantage of the shal-
low water equations while avoiding the drawbacks of the depth-
averaged models, a multilayer system [13] was adopted in this
study. The multilayer shallow water equations have been solved
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by finite difference, finite element, and finite volume methods.
Abgrall and Karni [14] developed a relaxation scheme to solve
bi-fluid shallow water problems. The solution procedure has
some similarities including propagation and relaxation; however,
the present work deals with a single fluid and the solution proce-
dure of the LBM is performed in the kinetic model. Audusse et al.
[15] extended previous works [16,17] to model dam breaks using
a finite volume solver. Their finite volume method is based on a
continuous kinetic model to calculate the fluxes between cells.
In this perspective, the LBM can be viewed as a discrete kinetic
model. A detailed comparison of the LBM and continuous kinetic
schemes can be found in [18]. Continuous kinetic schemes such
as the gas kinetic scheme were found to be more memory effi-
cient while the discrete kinetic LBM is computationally more effi-
cient based on being three times faster. To the authors’ best
knowledge, the LBM has not been applied to the multilayer shal-
low water equations with HPC. Due the simplicity of the multi-
layer LB model, it can be an efficient numerical method for
more complex flow and transport problems and can be easily ex-
tended to include, for example, turbulence models and quadratic
friction laws while retaining the parallel advantages.

The objective of this study is to develop a parallelized LB model
to solve the multilayer shallow water equations for three-dimen-
sional shallow water flow problems on irregular boundary geome-
try and bathymetry. The LB method using a single relaxation time
Bhatnagar–Gross–Krook (BGK) collision operator [19] (LBGK) was
adopted to solve each layer coupled by the vertical viscosity forc-
ing term. To increase solution stability, an implicit step is sug-
gested to obtain flow velocities. The main advantage of using the
LBM is that after selecting appropriate equilibrium distribution
functions, the LB algorithm is only slightly modified for each layer
and retains all the simplicities of the LBM within the HPC environ-
ment. We focus on the application of the multilayer shallow water
equations to the problems of wind-driven circulation. We imple-
ment and investigate the parallel performance of the multilayer
LB method on a shared memory HPC system, an AIX v5.3 constel-
lation from IBM with 1.9 GHz IBM POWER5+ processors housed in
the Center for Computation & Technology (CCT), Louisiana State
University. We also demonstrate smaller case studies on a single
workstation with a 3.0 GHz Intel� CoreTM2 Extreme quad core to
illustrate parallel speedup on a single workstation. In this study,
our LB code was written in Fortran 90 and parallelized with Open-
MP using flow domain decomposition and cache optimization.

In this study, we use a parallel decomposition based on dividing
the flow domain along the lateral flow direction, not based on the
number of layers. A parallel decomposition based on layers would
be challenging since the number of layers is always smaller than
the number of nodes in the longitudinal or lateral directions. Fur-
thermore, this decomposition would be difficult to balance work-
loads and require more communication between processors
during the LB and implicit step. On the other hand, the decompo-
sition along the lateral flow direction retains the inherent parallel-
ism of the LBM by limiting the communication between
processors. It also ensures that the vertical coupling between lay-
ers remains local to each processor, which is important for the im-
plicit step.

The paper is organized as follows. In Section 2, the multi-
layer shallow water equations are introduced. Section 3 intro-
duces the multilayer LB model and recovers the macroscopic
equations up to second order accuracy through the Chapman–
Enskog expansion. Section 4 discusses the parallel computing
implementation of the multilayer LB model on shared memory
systems. Section 5 presents numerical results to verify the mod-
el results against analytical solutions and demonstrate its ability
to model stratified horizontal velocities. Section 6 concludes the
study.

2. Multilayer shallow water equations

A multilayer model is considered by converting a three-dimen-
sional shallow water flow problem into a number of coupled two-
dimensional shallow water flow problems in layers as shown in
Fig. 1. Based on the multilayer Saint–Venant system [13], the gov-
erning equations are similar to the traditional shallow water equa-
tions with additional terms for transferring momentum between
the layers:
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where hð‘Þ is the local water height in layer ‘; uð‘Þi is the local veloc-
ity component in the i direction in layer ‘; Fð‘Þi is the external force
acting on layer ‘; g is the gravitational acceleration, m is the kine-
matic viscosity, xi is the Cartesian coordinate, and t is time. M is
the total number of layers. The external force consists of the
wind-driven forcing term Fð‘ÞWi
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slope forcing term Fð‘ÞPi

� �
, the vertical kinematic eddy viscosity term

Fð‘Þli

� �
, the non-conservative pressure source term Fð‘ÞNCi

� �
[13,15–

17], and the Coriolis forcing term Fð‘ÞCi

� �
as follows

Fð‘Þi ¼ Fð‘ÞWi þ Fð‘ÞPi þ Fð‘Þli þ Fð‘ÞNCi þ Fð‘ÞCi ð3Þ

F‘Wi ¼ dM‘

sW
iz

q
¼ dM‘

qa

q
CW UWiWs ð4Þ

Fð‘ÞPi ¼ �ghð‘Þ
@zb

@xi
ð5Þ

Fð‘Þli ¼ �jd1‘u
ð‘Þ
i þ 2lð1� dM‘Þ

uð‘þ1Þ
i � uð‘Þi

hð‘þ1Þ þ hð‘Þ

� 2lð1� d1‘Þ
uð‘Þi � uð‘�1Þ

i

hð‘Þ þ hð‘�1Þ ð6Þ

Fð‘ÞNCi ¼ �
gH2

2
@

@xi

hð‘Þ

H

 !
ð7Þ

Fð‘ÞCi ¼
fchð‘Þuy; i ¼ x

�fchð‘Þux; i ¼ y

8<
: ð8Þ

hM

uM
hM-1

h2

h1

uM-1

u2

u1

H

zb

x

y
z

Fig. 1. Multilayer shallow water discretization.
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