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a b s t r a c t

We investigate the temporal scaling properties of mixing in heterogeneous permeability fields with vari-
ances ranging from very small ðr2

ln K ¼ 0:01Þ to very large ðr2
ln K ¼ 9Þ. We quantify mixing by the scalar

dissipation rate, which we estimate over a large range of temporal scales. For an initial pulse line injec-
tion, we find that moderate and strong heterogeneity induce anomalous temporal scaling of the scalar
dissipation rate, which we call non-Fickian mixing. This effect is particularly relevant for upscaling reac-
tive transport as it implies a non-Fickian scaling of reactive transport. Although spreading and mixing are
intimately coupled, we find that their scaling properties are not directly related in general. In the non-
Fickian mixing regime, the temporal scaling of the scalar dissipation rate depends on the complex spatial
distribution of the concentration field that generates transverse mixing. For times larger than the char-
acteristic diffusion time associated with one permeability field correlation length, the heterogeneity of
concentration in the plume is attenuated and progressively erased by diffusion. Thus, at large times,
the temporal scaling of mixing and spreading can be related through a simple analytical expression.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mixing is a fundamental process that drives chemical reactions
in fluids [40,11,43,14,15]. Understanding and predicting mixing is
a key step for predicting reactive transport as it describes the rate
at which reactants will meet. Therefore, it has attracted the atten-
tion of researchers across a range of scientific communities. In geo-
physical flows, mixing finds applications both in porous media flow
[30,27,31] and in turbulent flows at various scales as found in oce-
anic and atmospheric flows [38,47,39]. Heterogeneous velocity
fields, which fluctuate at multiple scales, are typical in these appli-
cations. The flow heterogeneity generates complex concentration
distributions that enhance mixing (e.g., [38,44]).

For transport in heterogeneous porous media, a fundamental
difference exists between the concepts of spreading and mixing
[29,30]. Spreading describes the spatial extent of a solute plume,
while mixing can be seen as the process that increases the actual
volume occupied by the solute. Thus, the processes of spreading
and mixing may be quantified in terms of (suitably defined) mo-
ments of the concentration distribution (e.g., [29,1,16–18]). Mixing
can also be seen as the process that smoothes out concentration

contrasts, or in other words homogenizes a given (heterogeneous)
concentration distribution. Various measures for quantifying mix-
ing have been proposed. For example, the dilution index is a mix-
ing measure based on entropy concepts [30] that quantifies the
volume occupied by the solute. As such it measures the mixing
state of a plume. On the other hand, the mean scalar dissipation
rate defined from the local concentration gradients quantifies the
mixing rate (e.g., [38]). The mixing state and mixing rate evolve
with time in opposite directions.

Spreading and mixing are strongly coupled (e.g., [29,30]).
Spreading is essentially driven by advective mechanisms and tends
to enhance concentration contrasts, which in turn enhance mixing.
Various studies on effective mixing and reactive transport for mod-
erately heterogeneous media exist [25–27,22,35,10,21]. These are
typically based on perturbation methods and restricted to moder-
ately varying permeability fields. Mixing has not been analyzed for
highly heterogeneous permeability fields. The high degree of
heterogeneity implies that the large scale spreading of a solute
plume is non-Fickian over a large range of times [36,23,
4,3,12,34,32,37,50]. Non-Fickian spreading can be characterized
by the scaling of the characteristic plume size, r1, defined as the
standard deviation of the spatial distribution of concentrations:

r2
1ðtÞ ¼

1
Lx

Z
X

ddx x1 � hx1ðtÞi½ �2cðx; tÞ: ð1Þ
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where hx1(t)i is the center of mass coordinate of the plume in the
direction of mean flow, which here is aligned with the one-direction
of the coordinate system X is the transport domain. The broad
interest in non-Fickian spreading constrats with the paucity of sim-
ilar work on mixing. The objective of our work is precisely to inves-
tigate the relationship between non-Fickian spreading and non-
Fickian mixing.

We start by introducing the mixing measure that we consider,
the scalar dissipation rate and show that it is related to effective
reaction laws. We propose an efficient numerical method to quan-
tify the temporal scaling of the scalar dissipation with high accu-
racy. Using this method, we quantify the temporal scaling of
spreading and mixing. We demonstrate the occurence of non-
Fickian mixing, even for cases that appear to be Fickian from a
spreading perspective, and discuss its physical origin.

2. The scalar dissipation rate

We consider transport by diffusion and advection in a heteroge-
neous velocity field. We quantify global mixing by the scalar dissi-
pation rate (e.g., [38,24,27,19,46,6]), which is a global measure of
the mixing rate defined as

vðtÞ ¼
Z

X
ddxDrcðx; tÞ � rcðx; tÞ; ð2Þ

where D is the constant diffusion coefficient, c is the local concen-
tration and d is the Eulerian dimension of space. Note that for sim-
plification we do not consider a local dispersion tensor in this study.
The methods and analysis presented can however readily be ex-
tended to take this into account.

The interest of the scalar dissipation rate as a mixing measure
can be understood from the work of de Simoni et al. [14,15], which
we briefly summarise here. Consider the transport of two reacting
species of concentrations c1(x, t) and c2(x, t), which react in equilib-
rium to produce a third immobile component c3(x, t). The govern-
ing equations can be written as

@ci

@t
þ vðxÞ � rci ¼ Dr2ci þ rðx; tÞ; i ¼ 1;2 ð3Þ

and

@c3

@t
¼ �rðx; tÞ; c1c2 ¼ Kc; ð4Þ

where v(x, t) is the velocity field, D is the diffusion coefficient, as-
sumed to be identical for all components, r(x, t) is the equilibrium
reaction rate and Kc is the chemical equilibrium constant. A conser-
vative component for this reactive transport system can be defined
as c(x, t) = c1(x, t) � c2(x, t). Subtracting the transport equations (3)
for c1 and c2, it can be shown that c satisfies the pure advection dif-
fusion equation, which is the same as (3) but with r = 0. This shows
that c is indeed conservative.

Using (4) and the definition of c allows us to solve for c1(c) and
c2(c). Substituting the latter in (4), while using the fact that c is
conservative yields

r2ðx; tÞ ¼
d2c2

dc2

 !
Drc � rc; ð5Þ

where the first term d2c2/dc2 is called the chemical factor and de-
pends on the specifics of the reaction (stoichiometry and equilib-
rium constant). The second term Drc � rc, called the mixing
factor, is exactly the integrand of the scalar dissipation rate defined
in (2). From (5) we can define the global reaction rate as:

R2ðtÞ ¼
Z

X
ddx

d2c2

dc2 Drc � rc: ð6Þ

When the chemical factor varies little over the range of c(x, t) con-
sidered [21,42], it can be assumed to be almost constant and thus
the global reaction rate is directly proportional to the scalar dissipa-
tion rate. Note however that when the chemical factor varies
strongly with the mixing ratio such a global measure is not suffi-
cient for predicting reactions [49,5]. In general, if the scalar dissipa-
tion rate temporal scaling is anomalous, i.e. the mixing process is
non-Fickian, the reaction rate temporal scaling is also expected to
be anomalous. Thus, understanding the scaling behavior of the sca-
lar dissipation rate is an important first step for upscaling reactive
transport.

One of the main difficulties in evaluating the scalar dissipation
rate and reactions for that matter is the numerical calculation of
the concentration gradients in Eqs. (2) and (6). The concentration
field can vary sharply over small distances, particularly for highly
heterogeneous velocity fields. An accurate quantification of con-
centration gradients requires a very fine discretization for Eulerian
numerical schemes, where numerical dispersion can induce errors,
or a very large number of particles for random walk approaches.
Concentration gradients are very sensitive to numerical noise in
the concentration field. To circumvent this issue, Fernandez-Garcia
et al. [21] proposed an interpolation procedure to obtain a smooth
concentration field from a limited number of particles. While
appealing and useful in practice, such interpolation methods must
be conducted with caution as they can lead to smoothing of actual
gradients. A lack of resolution of these gradients can seriously com-
promise the ability of any model to accurately predict mixing and
reactions [2].

Global mixing measures such as the scalar dissipation rate can
be determined without the computation of the local concentration
gradients. Instead one can evaluate the scalar dissipation rate from
the integral of the squared concentration (e.g., [38]), defined as

MðtÞ ¼
Z

X
ddxc2: ð7Þ

For advective–diffusive transport in a domain with no solute flux
boundary conditions, the scalar dissipation rates can be expressed
as

vðtÞ ¼ �1
2

dM
dt

: ð8Þ

The equivalence of expressions (8) and (2) can be seen by multiply-
ing the advection–diffusion equation in (4) for r(x, t) = 0 by c and
integrating over space, using the divergence theorem. This is de-
tailed in Appendix A. Notice that M(t) should not be confused with
spatial or temporal moments of concentration. It quantifies the var-
iability of the concentration values at a given time and not the tem-
poral or spatial extent of the plume.

We now illustrate that calculating the scalar dissipation rate
using Eq. (8) is significantly better than calculating it from local
gradients of concentration (Eq. (2)). We solve the advection–
diffusion equation for a homogeneous medium and an initial line
injection using a particle tracking method. We take a permeameter
geometry with homogeneous velocity v and diffusion coefficient D.
Snapshots of the calculated concentration distributions are shown
in Fig. 1. The time is normalized by the characteristic diffusion time
over one pixel sD = Dx2/D (here we take sD = 3), where Dx is the
pixel size. The local concentration is normalized by the total mass
so that

R
X ddxcðxÞ ¼ 1. For such system, the analytical solution for

the scalar dissipation rate is obtained by replacing the ADE solu-
tion in Eq. (2), which yields,

v1DðtÞ ¼
C2

0Lyt�3=2

8
ffiffiffiffiffiffiffiffiffiffi
2pD
p ; ð9Þ

where C0 is the initial concentration and Ly is the size of the domain
in the transversal direction.
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