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We introduce the reciprocity and reciprocity gap principles for flow problems in hydrogeology and illustrate
their interest in addressing identification problems. The reciprocity principle is derived from mechanics and
establishes for flow problems a relationship between different sets of forcing terms, including sources, sinks
and boundary conditions, and the resulting head fields. The reciprocity gap principle compares different head
fields resulting from the same forcing terms applied to different structures. We give general 2D expressions
of the reciprocity and reciprocity gap principles for transient flow problems and give two examples of
applications for the identification of transmissivity values and interfaces between different transmissivities.
Identification capacities of the reciprocity and reciprocity gap principles yielding direct inversion methods
could be used as initial guesses for more advanced inverse problem methodologies.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The reciprocity gap principle is built up on the classical reciprocity
principle also known as the Maxwell-Betti theorem [7,8], first
introduced in mechanics for linear problems [2,3,5,10]. According to
the reciprocity principle for a linear elastic structure subjected to two
forces F and G, the work resulting from the application of force F on
the displacement field yielded by force G is equal to thework resulting
from the application force G on the displacement field yielded by force
F. The reciprocity principle is classically applied in mechanics to
obtain displacements due to complex forces by using simpler proxy
problems with simpler forces that are more easily solved [14]. From a
phenomenological perspective, it establishes strong relationships
between different sets of forces and the consequent displacements
applied to a given structure. When the structure is altered, a gap is
introduced in the reciprocity. Reciprocity breaks down but the gap
within the reciprocity becomes highly informative about the
alteration of the structure and can be used inversely to identify the
solid alteration. The bottom line of identification then consists in
comparing through the reciprocity gap the response of the altered
domain with the response of a simpler reference [2,3]. The reciprocity

gap yields directly an optimization problem. Very generally, the
interests of both the reciprocity and reciprocity gap principles
strongly depend on the ability of defining the simpler proxy problems
and simpler references mentioned above, which will be generically
referred to in the remaining of the text as the test functions.

Similar reciprocity relationships have been derived for slow
viscous flows from Lorentz reciprocal theorem [17] and from the
energy balance to establish Darcy's law from pore-scale mass
transport and energy equations [19,21]. A practical analogy can be
established with the reciprocity principle of mechanics by using
sources and boundary conditions as forcing terms and the resulting
head field as a consequence. It is no longer the work of the forces that
is conserved but the viscous dissipation energy. We argue in this
paper that the simple reciprocity and the reciprocity gap principles
and their concealed identification possibilities are of interest for
groundwater flows. After a general review of the reciprocity and
reciprocity gap principles (Section 2), we derive them for groundwa-
ter flows (Section 3) and illustrate their interests in parameter and
structure identifications (Section 4).

2. Basics on the reciprocity and reciprocity gap principles

2.1. General formulation and interpretation of the reciprocity principle

We express the reciprocity principle in a general mathematical
framework for linear problems. Let V be a Hilbert space associated to a
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domain Ω, a a bilinear form on V, assumed to be symmetric,
continuous and coercive and li a linear form defined on V for i=1, 2
assumed to be continuous. We define the following variational
problem :

Findui onV suchthat aðui;φÞ = liðφÞ for allφ∈Ω: ð1Þ

With (ui, φ) successively equal to (u1, u2) and (u2, u1) and using the
symmetry of operator a, the reciprocity principle can be expressed by
the identity:

l1ðu2Þ = l2ðu1Þ: ð2Þ

The reciprocity principle is fundamentally derived from the
symmetry and the bilinearity of the form a. From a physical
perspective, it relates the responses to different external and internal
forcing terms (source/sink terms, boundary conditions) of a given
phenomenon on a fixed structure represented by form a. The
reciprocity principle is also known as the virtual work principle
where φ are called virtual fields, and as the variational or weak
formulation where φ are called test functions. Finally, the reciprocity
principle is similar to Green's second identity giving way to the
boundary element methods sometime used as an alternative
numerical method to the Finite Element and Finite Difference
methods. For diffusion problems, the boundary element methods
use the Green functions as test functions with inner sources (i.e.
source inside or at the limit of the computational domain) [9,11].

2.2. From reciprocity to reciprocity gap

When operator a is modified to aT by altering the geometry or the
parameters of the structure, the reciprocity principle does no longer
hold. Where the reciprocity principle characterizes the consequences
of forcing terms, the reciprocity gap is a signature of alteration in the
domain structure or in the parameters. We take a as the reference
problem and express aT in the same kind of formulation as Eq. (1) for
a:

aT ðuT ; vÞ = lT ðvÞ

where uT and v are two functions of the Hilbert space V. The
reciprocity gap is expressed by:

aT ðu;uT Þ−aðuT ;uÞ = lT ðuÞ−lðuT Þ ð3Þ

The reciprocity gap principle has been initially introduced in the
mechanical context for flaws detection. It has also been used for
boundary data completion where the objective is to recover missing
boundary data when the boundary conditions are missing in a part of
the boundary and over-determined in the remaining part of the
boundary [6]. It has also been applied to the inverse scattering
problem in order to determine the shape of an unknown object
embedded in an otherwise homogeneous domain from data at the
domain limits [12].

2.3. Consistent choice of test functions with regard to targeted
applications

The critical point of the method is the relevant choice of the test
functions. The test functions should ideally be closely related to the
initial problem but should lead to much simpler and, if possible,
analytical solutions. For example, for Laplace equation, classical test
functions are harmonic polynomials and Green's functions. Harmonic
polynomials in 2D are real or imaginary part of zk with k a positive or
negative integer and z the complex variable taken with an origin
outside of the computational domain [13,18]. Green's functions are
(− log(∥x−x0∥) in 2D with x0 outside of the computational domain

[1]. Using again the terminology of the alteration of a known system,
test functions give some moments of the alteration. In a more
sophisticated approach, test functions could be built incrementally for
non-homogeneous but simpler reference media. The reciprocity gap
would then compare known simple to unknownmore complexmedia
[4].

3. Reciprocity and reciprocity gap principles applied to the 2D
flow equation

We derive the reciprocity gap principle for general transient
Darcean single-phase flows in porous media. Combining continuity
equations and Darcy's law integrated on the vertical dimension, we
derive the following boundary value problem that governs the
hydraulic head h in a 2D aquifer over a time interval [t0 , tf]:

Sðx; yÞ∂h∂t−∇:ðTðx; yÞ∇hÞ = Q in Ω × ½t0; tf �; ðaÞ
T∇h:n = QN on ΓN × ½t0; tf �; ðbÞ
h = hD on ΓD × ½t0; tf �; ðcÞ
hðx; y; t0Þ = h0 in Ω ðdÞ

8>>>>><
>>>>>:

ð4Þ

with S(x, y) the storage coefficient field, T(x, y) the transmissivity field,
Q the internal source/sink terms, hD the prescribed heads at the
Dirichlet boundary ΓD, QN the prescribed flux at the remaining
Neuman boundary ΓN and h0 the initial hydraulic head distribution.
We hereafter establish successively the reciprocity gap expression for
transient flows for generic 2D media and for the specific 2D zonation
case.

3.1. Reciprocity principle for general 2D flow problems

Reciprocity can be applied to the transient flow problem using test
functions derived from the adjoint of the flow Eq. (4-a) φ defined by :

Sðx; yÞ∂φ∂t + ∇:ðTðx; yÞ∇φÞ = 0 in Ω × ½t0; tf �;
T∇φ:n = Ψ on ∂Ω × ½t0; tf �;
φðx; y; tf Þ = φf in Ω

8>>><
>>>:

ð5Þ

where φ is the test function,Ψ is a flow boundary condition at the full
limit ∂Ω=ΓN∪ΓN and φf is the final head distribution. We note that
we can set whatever type of boundary conditions for the test function
φ. We have used here the Neuman boundary conditions for getting
not too complex expressions of the reciprocity principles.

Multiplying the first equations of systems (4) and (5) by φ and
h respectively, integrating them over Ω, and applying Green's first
identity lead to the two following equations:

∫ΩSðx; yÞ∂h∂t :φ + ∫ΩTðx; yÞ∇h:∇φ−∫∂ΩTðx; yÞ∂h∂n:φ = ∫ΩQφ

∫ΩSðx; yÞ∂φ∂t :h−∫ΩTðx; yÞ∇h:∇φ + ∫∂ΩTðx; yÞ∂φ∂n:h = 0:
ð6Þ

Summing these two equations and integrating them over the time
range [t0, tf] leads to the transient-state expression of the reciprocity
principle for the flow equation:

∫ΩS hðtf Þ:φf−h0:φðt0Þ
� �

= ∫tf
t0
∫∂Ω T∂h∂n:φ−h:Ψ

� �
+ ∫tf

t0
∫ΩQφ: ð7Þ

It relates the head values at the boundary at any time, the head
values in the domain at the initial and final times with the
transmissivity and storage coefficient fields.
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