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a b s t r a c t

Turbidity currents may feature active sediment transport and rapid bed deformation, such as those
responsible for the erosion of many submarine canyons. Yet previous mathematical models are built
upon simplified governing equations and involve steady flow and weak sediment transport assumptions,
which are not in complete accordance with rigorous conservation laws. It so far remains unknown if
these could have considerable impacts on the evolution of turbidity currents. Here a fully coupled mod-
eling study is presented to gain new insights into the evolution of turbidity currents. The recent analysis
of the multiple time scales of subaerial sediment-laden flows over erodible bed [Cao Z, Li Y, Yue Z. Multi-
ple time scales of alluvial rivers carrying suspended sediment and their implications for mathematical
modeling. Adv Water Resour 2007;30(4):715–29] is extended to subaqueous turbidity currents to com-
plement the fully coupled modeling. Results from numerical simulations show the ability of the present
coupled model to reproduce self-accelerating turbidity currents. Comparison among the fully and par-
tially coupled and decoupled models along with the analysis of the relative time scale of bed deformation
explicitly demonstrate that fully coupled modeling is essential for refined resolution of those turbidity
currents featuring active sediment transport and rapid bed deformation, and existing models based on
simplified conservation laws need to be reformulated.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Turbidity currents are driven by the buoyancy force arising from
the bulk density excess due to the presence of suspended sediment,
and occur in numerous man-made and natural situations. In reser-
voirs and lakes, turbidity currents are important to the manage-
ment of siltation and water quality (e.g., [38,42,10,30]). Turbidity
currents in oceans are known to be a creator of submarine canyons
and fans and have attracted much interest (e.g., [22,32,4,14,39,33]).

Over the recent decades, there have been a number of investiga-
tions, including laboratory experiments, field observations and
mathematical modeling of turbidity currents because of their pro-
found impacts on inland waters and oceans. Previous laboratory
experiments of turbidity currents include Garcia and Parker
[16,17], Bonnecaze et al. [3], Hallworth and Huppert [18], Yu
et al. [42], Alexander and Mulder [1], Baas et al. [2] and Oehy
and Schleiss [30]. However, these may not be able to fully reveal
the mechanism of turbidity currents as constrained by the compar-
atively small spatial scales that can be realistically accommodated
in laboratories [27–29]. Field observations (e.g., [22,24,9]) are
scarce because of the need to operate underwater, the substantial
equipment requirements and the destructive effects that turbidity

currents could have on underwater structures [22,15]. Due to the
aforementioned issues with laboratory experiments and field
observations, mathematical modeling seems to be an attractive
alternative for the investigation of turbidity currents.

Mathematical modeling of turbidity currents has been set under
distinct frameworks, ranging from models based on classical fluid
dynamics principles to new methods that have emerged from
alternative computational paradigms such as cellular automata.
Cellular automata models have recently been employed to simu-
late the evolution of turbidity currents [35–37]. In this category
of models, the dynamical system of turbidity currents is subdi-
vided into elementary parts, and simulated by updating each ele-
mentary part. Yet, the development of cellular automata models
for turbidity currents is still in its infancy. Mathematical models
based on classical fluid dynamics principles have received great
attention in the last several decades, including full three dimen-
sional (3D), vertical two dimensional (2D) and depth-averaged
models. Full 3D models (e.g., [10,9,21,23,20,30]) and vertical 2D
models [13] normally incorporate a turbulence closure model
and can provide detailed flow structure information along the cur-
rent depth. However, their applications to turbidity currents with
active sediment transport and rapid bed deformation are largely
hindered because of the movable boundaries (including the free
surface and mobile-bed), i.e., they are approximately applicable
to cases with steady (or slightly unsteady) flow, mild bed deforma-
tion or fixed bed situations. Depth-averaged models have been em-
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ployed reasonably widely to simulate turbidity currents, either
decoupled or partially coupled. In decoupled models, bed deforma-
tion is not considered at all (e.g., [14,33,6]). In partially coupled
models, bed deformation is taken into account in the mass conser-
vation equation of bed material (e.g., [11,12,43,5,34]), yet its feed-
back impacts on the evolution of turbidity currents are partly
neglected. This is because the mass and momentum transfer
respectively in the continuity and momentum equations for the
water–sediment mixture are exclusively ignored without justifica-
tion, which arise from sediment exchange with the bed. Pantin [31]
proposes a model with full consideration of the mass and momen-
tum transfers due to sediment exchange with the bed; however,
bed deformation is not considered at all. Strictly speaking, existing
depth-averaged models are built upon simplified governing equa-
tions, and not in complete accordance with the rigorous conserva-
tion laws. Thus they are only approximately suitable for turbidity
currents with weak sediment transport and mild bed deformation
or fixed bed situations. Actually, there exists in nature a hierarchy
of turbidity currents assuming active sediment transport and rapid
bed deformation. For instance, submarine turbidity currents can
attain surprisingly swift velocities, as high as 20 m/s (e.g.,
[19,26,22]). The most telling case is the self-accelerating turbidity
currents (e.g., [32,14,33]). It so far remains unknown if simplifica-
tion of the governing equations could have considerable impacts
on the spatial and temporal evolution of turbidity currents. Natu-
rally, the need is evident for physically enhanced models applica-
ble to turbidity currents featuring active sediment transport and
rapid bed deformation.

This study aims to investigate fully coupled modeling of turbid-
ity currents with active sediment transport and rapid bed deforma-
tion, while still being applicable to situations with steady (or
slightly unsteady) and weak sediment transport and mild bed
deformation. A fully coupled model is presented, of which the gov-

erning equations are cast into a conservative hyperbolic system
and numerically solved using the Total-Variation-Diminishing
(TVD) version of the second-order Weighted Average Flux (WAF)
method along with the Slope Limiter Centered (SLIC) approximate
Riemann solver and the MINBEE limiter [40]. The recent analysis of
the multiple time scales of subaerial sediment-laden flows over
erodible bed by Cao et al. [8] is extended to subaqueous turbidity
currents. Particular attention is paid to the feedback impacts of
bed deformation on the evolution of turbidity currents.

2. Mathematical formulations

2.1. Governing equations

Consider longitudinally one-dimensional and layer-averaged
formulation of turbidity currents over an erodible bed that is com-
posed of uniform and non-cohesive sediment with particle diame-
ter d. Pantin [31] proposes a model with full consideration of the
mass and momentum transfers due to sediment exchange with
the bed, including the mass and momentum conservation for the
water–sediment mixture flow, and the mass conservation of sedi-
ment; however, bed deformation is not considered at all. Based on
the work of Pantin [31], the mass conservation of bed material is
herewith incorporated to reflect the potential bed deformation.
Therefore, the complete governing equations read
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Nomenclature

Sb canyon bed slope
d sediment particle diameter
vs sediment settling velocity
p sediment porosity
qw, qs densities of water and sediment, respectively
q density of water–sediment mixture
q0 density of saturated bed
R submerged specific gravity of sediment
t time
x streamwise coordinate
h turbidity current thickness
u layer-averaged velocity
c layer-averaged volumetric sediment concentration
z bed elevation
k mean turbulent energy
g gravitational acceleration
u* bed shear velocity
cD bed drag coefficient
cD� bed drag coefficient at equilibrium conditions
rw ratio of upper-interface resistance to bed resistance
E, D sediment entrainment and deposition fluxes
ew water entrainment coefficient
Ri Richardson number
e0 dissipation rate
cb near bed sediment concentration
Es erosion coefficient
Z parameter determining the value of Es

Zc value of Z needed for the onset of significant suspension
Zm value of Z above which E abruptly ceases to increase

m kinematic viscosity of clear-water
U conservative variable vector defined in Eq. (19a)
F flux vector defined in Eq. (19b)
S source vector defined in Eq. (19c)
Q primitive variable vector
q one of the primitive variable vector
a, g, b coefficients
Ii computing cell
L, R superscripts representing the side of computing cell
Di limited slope
W primitive variable vector defined in Eq. (34a)
A matrix defined in Eq. (34b)
R vector defined in Eq. (34c)
Cr Courant number
k01,2,3 three eigenvalues of the Jacobian matrix @F/@U
Dt time step
Dx spatial step
Dz bed scour depth
i spatial node index
m time step index
Fr0 the Froude number at the inlet boundary
k1,2,3,4 celerities
Tb time scale of bed deformation
Th time scale of turbidity current thickness
Tb/Th relative time scale of bed deformation due to turbidity

currents
TCt constitute contribution of temporal change
TCx constitute contribution of spatial change
Rtx contribution ratio of temporal change to spatial change
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