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a b s t r a c t

This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator
(LTRT) to solve saltwater intrusion problems. A directional-speed-of-sound (DSS) technique is introduced
to take into account the hydraulic conductivity heterogeneity and discontinuity, as well as the velocity-
dependent dispersion coefficient. The forcing terms in the LTRT model are customized in order to recover
the density-dependent groundwater flow and mass transport equations. Using the LTRT with the squared
DSS achieves at least second-order accuracy. The LTRT results are verified with Henry’s analytical solution
as well as compared with several numerical examples and modified Henry problems that consider het-
erogeneous hydraulic conductivity and velocity-dependent dispersion. The numerical results show good
agreement with the Henry analytical solution and with the numerical solutions obtained by other numer-
ical methods.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Saltwater intrusion in aquifers is often described by coupled
density-dependent groundwater flow and advection–dispersion
equations because of hydrodynamic dispersion and a wide transi-
tion zone [1–5]. Numerical methods for solving the saltwater
intrusion problem include the method of characteristics (MOC)
[6], the finite element method (FEM) [7] and the finite difference
method (FDM) [8,9]. Recently, the mixed hybrid finite element
(MHFE) and discontinuous finite element (DFE) methods were
developed to increase numerical stability when solving variable
density flow and transport problems [10,11]. To authors’ knowl-
edge, there is very little discussion on the implementation of the
lattice Boltzmann method (LBM) to saltwater intrusion problems
in aquifers.

In the past years, the LBM has received increasing attention on
transport problems because the LBM solves macroscopic equa-
tions based on microscopic models and mesoscopic kinetic equa-
tions. Although initially developed for solving hydrodynamic
problems [12], the LBM has been developed to solve various

transport problems such as the reaction–diffusion equation [13],
the contaminant transport equation [14], the coupled flow and
heat/mass transfer problem due to density dependency [15], the
density-dependent flow problem in porous media [16] and the
anisotropic advection–dispersion equation (AADE) [17,18].
Although in Zhang et al. [17] the anisotropic dispersion tensor
was recovered by using direction-dependent relaxation times,
solving the AADE using the LBM remains challenging when the
principal directions of dispersion anisotropy are not aligned with
the lattice directions and the ratio of longitudinal to transverse
dispersivities is high. Moreover, as an extension of Ginzburg
[18], the LBM has been also applied to solving groundwater flows
in heterogeneous stratified aquifers in Ginzburg [19] and in Ginz-
burg and d’Humieres [20] by maintaining the continuity of the
normal component of the Darcy velocity (total flux) at the inter-
face between layers. These layers were horizontal and aligned
with the lattice orientations, which may present a limitation to
the general case. In this work, we develop a technique to handle
heterogeneous and discontinuous hydraulic conductivity with
arbitrary lattice orientations.

The fast development of LBM arises from: first, the LBM is easy
to implement because it deals with complex equations by solving
explicitly a system of first-order linear differential equations (the
Boltzmann equation); second, the particle-based description of
the LBM provides a new way to implement complex boundary con-
ditions, e.g., the mass flux boundary condition [21,22]; third, the
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LBM is an explicit scheme that does not involve the resolution of
any global system of equations; and fourth, only information from
neighboring nodes (locality) is needed for evolving variables.
Therefore, the explicit nature along with the locality property
makes the LBM ideal for parallel computing.

The purpose of this study is to improve the LBM by using a two-
relaxation-time (TRT) collision operator and a directional-speed-
of-sound (DSS) technique to cope with heterogeneous hydraulic
conductivity and hydrodynamic dispersion in the saltwater intru-
sion problem. The lattice Boltzmann equation with the TRT colli-
sion operator is known as the LTRT model [18]. The LTRT will
provide additional flexibility to improve the accuracy. We will
introduce the DSS to take into account the hydraulic conductivity
heterogeneity and the velocity-dependent dispersion coefficient.
The analytical solutions of the original and modified Henry prob-
lems will be used to verify the LBM results. The LBM solutions will
also be compared with other numerical methods.

2. Density-dependent saltwater intrusion model

Darcy’s law for groundwater flow is [23]

q ¼ � k
l
ðrp� qgÞ ð1Þ

where q is the Darcy velocity or Darcy flux, k is the intrinsic perme-
ability, l is the dynamic viscosity of water, q is the density of water
and is a function of space and time, p is the pore water pressure, g is
the vector of gravitational acceleration and r is the gradient oper-
ator. The hydraulic conductivity is defined as K = kqg/l. This study
focuses on saltwater intrusion simulation in a two-dimensional
confined aquifer in a vertical plane, where the maximum salinity
considered is the same as that of seawater. The density-dependent
groundwater flow equation in terms of the fresh groundwater head
is [24–26]
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where Ssf
is the freshwater specific storage, C is the salt concentra-

tion, hf = p/qf g + z is the fresh groundwater head, Kf = kqf g/l is the
freshwater hydraulic conductivity, n is the porosity, qf is the fresh-
water density, / = q/qf is the density ratio, qss is the water density
at the sinks/sources, Q ss is the volumetric flow rate per unit aquifer
volume at the sinks/sources, x is the spatial coordinate in the hori-
zontal direction, z is the spatial coordinate in the upward vertical
direction and t is the time variable.

A linear relationship between the water density ratio and salt
concentration is observed for salt concentrations less than
35 parts per thousand (ppt) [27]. Therefore, the density ratio is
considered to be / = 1 + EC in this study, where E is a constant.

The salt transport equation in porous media is given by the
advection–dispersion equation (ADE):

@ðnCÞ
@t
þr � ðnuCÞ ¼ r � ðnDrCÞ þ CssQ ss ð3Þ

where u = q/n is the average pore velocity, D is the dispersion coef-
ficient and Css is the salt concentration at the sinks/sources. The
porosity is considered not uniform n = n(x). This study focuses on
the isotropic advection–dispersion equation (IADE), where the
hydrodynamic dispersion is isotropic and velocity-dependent [5]:

D ¼ jjuj þ Dm ð4Þ

where j is the dispersivity and Dm is the molecular diffusion
coefficient.

3. LBM for transport equation

3.1. Lattice Boltzmann method with two-relaxation-time collision
operator (LTRT)

This study develops a lattice Boltzmann method with the two-
relaxation-time collision operator (LTRT) [18,28] for saltwater
intrusion simulation in confined aquifers. The discrete velocity
fields considered in this study include a D2Q5 lattice (two dimen-
sions and five discrete velocities) and a D2Q9 lattice (two dimen-
sions and nine discrete velocities), shown in Fig. 1, which have
zero velocity for resting particles. The LTRT is

fiðxþ ciDt; t þ DtÞ ¼ fiðx; tÞ �
1
ss
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where fi(x + ciDt, t + Dt) represents the post-collision particle distri-
bution function streaming along direction i to location (x + ciDt) at
time t þ Dt; f s

i and f seq
i are the symmetric parts of the pre-collision

particle distribution function and the equilibrium distribution func-
tion (EDF), respectively; f a

i and f aeq
i are the anti-symmetric parts of

the pre-collision particle distribution function and the EDF, respec-
tively; ss and sa are the symmetric relaxation-time and anti-sym-
metric relaxation-time, respectively; Fi is the forcing term along i
direction; ci is the particle velocity along the i direction; and Dt is
the time step. Eq. (5) reduces to the lattice Boltzmann method with
the Bhatnagar–Gross–Krook (BGK) collision operator [29], known as
LBGK, when ss = sa.

In the two-relaxation-time collision operator, particle distribu-
tion functions are relaxed to the equilibrium state by relaxing their
symmetric and anti-symmetric parts separately, which are given
by
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where fi and f eq
i are the particle distribution function and equilib-

rium distribution function (EDF) along the opposite direction of i.
The first four moments of the EDFs areX
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Fig. 1. D2Q5 and D2Q9 lattices.
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