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Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several
sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of
general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on
uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty
modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario
and downscaling uncertainties. The Dempster–Shafer (D–S) evidence theory is used for representing and
combining uncertainty from various sources. A significant advantage of the D–S framework over the traditional
probabilistic approach is that it allows for the allocation of a probabilitymass to sets or intervals, and can hence
handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how
the D–S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet
conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief
and plausibility in results. The D–S approach has been used in thiswork for information synthesis using various
evidence combination rules having different conflict modeling approaches. A case study is presented for
hydrologic drought prediction using downscaled streamflow in theMahanadi River at Hirakud in Orissa, India.
Projections ofnmost likelymonsoon streamflow sequences are obtained froma conditional randomfield (CRF)
downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon
standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment
(bpa) for a Dempster–Shafer structure, which represents uncertainty associated with each of the SSFI-4
classifications. These uncertainties are then combined across GCMs and scenarios using various evidence
combination rules given by the D–S theory. A Bayesian approach is also presented for this case study, which
models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for
the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D–S and
Bayesian approaches are compared, and relativemerits of each approach are discussed. Both approaches show
an increasing probability of extreme, severe andmoderate droughts and decreasing probability of normal and
wet conditions in Orissa as a result of climate change.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty in projected climate change arises from a number of
sources [5]: (1) the formulation and accuracy of the General
Circulation Model (GCM); (2) the magnitude of anthropogenic
emissions; and (3) the temporal and spatial impacts of natural
variations internal to the climate system. The first source of
uncertainty, referred to as GCM uncertainty, can be attributed to the
structural set-up (e.g. the choice of grid resolution and climate
processes included), and variability in the internal parameterizations

of a GCM. The second source of uncertainty, referred to as scenario
uncertainty, arises due to uncertainty in evolution of socio-economic
scenarios and human action. To account for the GCM and scenario
uncertainties, the use of GCM and scenario ensembles is recom-
mended for a realistic assessment of climate change impacts. Unlike
the other sources of uncertainty, the third type of uncertainty
resulting from the chaotic nature of the climate system is an inherent
property of the real climate system. Some studies use ensembles of
GCMs with different initial conditions for representing the impacts of
this type of uncertainty. This uncertainty will always be present and
cannot be reduced by human actions. The other sources of uncertainty
are human caused, either by inadequate modeling or by uncertain
understanding of how political and social processes turn out.
Assessing regional hydrologic impacts of climate change through
downscaling adds another source of uncertainty, through the choice
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of downscalingmethod. These uncertainties, arising from ‘incomplete’
and ‘unknowable’ information [26], propagate through the climate
change impact assessment in an inter-dependent, but not necessarily
additive or multiplicative manner. Thus, cascading uncertainties up to
the regional or local level leads to large uncertainty ranges at such
scales [33,43]. It is necessary to apply rigorous methods for
representing and quantifying uncertainty in order to assist a risk-
based approach to decision-making.

Recent studies to quantify uncertainty in large-scale climate change
prediction have typically used a comparison or spread of results from
various GCMs, scenarios and downscaling methods, perturbation
analysis of simplified climate models or expert opinion to quantify
uncertainty in climate variables [16]. Uncertainty in predictions
resulting from the GCMs is estimated by developing probability
distributions of key parameters (such as climate sensitivity or strength
of the terrestrial carbon sink), which are then propagated through the
GCMs using a Monte Carlo method. Model structural uncertainty is
usually assessed by generating and comparing results from multiple
model formulations. Such uncertainty analysis results in a probability
distribution for global or regional temperature increase corresponding
to each emissions scenario. However, subjective judgments are often
used for the choice of probability distributions for model parameters
(e.g., [24]). Recently, Bayesian Monte Carlo updating approaches have
been used to represent uncertainty in key model parameters
[10,26,38,39]. Greene et al. [13] generated probabilistic regional
temperature projections by using a multi-model ensemble of atmo-
sphere–ocean GCMs, using a Bayesian linear model. A commonly used
method of evaluating effects of climate change on flow regime is to use
an ensemble of GCMs, scenarios and statistical downscaling/regional
climate models to provide inputs to a hydrological model, and examine
the range of effects on a statistic of the modeled hydrologic variables
[1,3,24,29,44]. GCM and scenario uncertainties have been studied in
terms of PDFs of a hydrologic drought indicator such as standardized
precipitation index (SPI) [11], using an imprecise probability approach
[12] and through a possibilistic approach for streamflow downscaling
[25]. Prudhomme and Davies [28] examined uncertainties in climate
change impact analyses on river flow regimes in the UK, using either a
statistical or dynamical downscaling model for downscaling precipita-
tion from an ensemble of GCMs and scenarios, propagated to river flow
through a lumped hydrological model. They showed that uncertainties
from downscaling techniques and emission scenarios are of similar
magnitude, and generally smaller than GCM uncertainty. Kay et al. [17]
compared sources of uncertainty with respect to impact on flood
frequency in England. They considered six different sources of
uncertainty: future greenhouse gas emissions; Global Climate Model
(GCM) structure; downscaling from GCMs (including Regional Climate
Model structure); hydrological model structure; hydrological model
parameters and the internal variability of the climate system (sampled
by applying different GCM initial conditions).Minville et al. [23] studied
the impact of climate change on the hydrology of the Chute-du-Diable
watershed in Canada by comparing the statistics on current and
projected future discharge. They used ten equally weighted climate
projections from a combination of five general circulation models
(GCMs) and two greenhouse gas emission scenarios (GHGES) to define
an uncertainty envelope of future hydrologic variables.

The present study evaluates the use of a generalized uncertainty
measure using the Dempster–Shafer evidence theory, for quantifying
uncertainty in regional climate change projections. An uncertainty
modeling framework, which combines GCM, scenario and downscal-
ing uncertainties is evaluated. The Dempster–Shafer (D–S) evidence
theory, which can be considered a generalized Bayesian theory [6], is
used for representing and combining uncertainty. The D–S theory has
in recent years found wide applications in the fields of statistical
inference, sensor fusion, expert systems, diagnostics, risk analysis, and
decision analysis, due to its versatility in representing and combining
different types of evidence obtained from multiple sources. In this

work, the uncertainty combination methodology is applied to
projections of hydrologic drought in terms of monsoon standardized
streamflow index (SSFI-4) classifications, which are obtained from
streamflow projections for the Mahanadi River at Hirakud in Orissa,
India. Three GCMs (MIROC3.2, CGCM2 and GISS) with three scenarios
each (A1B, A2 and B1) are used. A conditional random field (CRF)
downscaling model [30] is used, whose output gives n-best predic-
tions which are converted to SSFI-4 projections. These are then used
to construct a Dempster–Shafer structure (DSS) through a basic
probability assignment (bpa) on SSFI-4 classifications. Future pro-
jected DSSs of the hydrologic variable are combined using the
Dempster–Shafer theory of evidence combination. Projections from
GCMs are combined using Dempster's rule, Zhang's center combina-
tion rule and disjunctive consensus rule of combination to get the final
projections for the hydrologic variable (SSFI-4 classifications) and the
associated uncertainty. A Bayesian approach is also used to derive
posterior distributions for frequencies of each SSFI-4 classification for
the same case study from the ensemble projections of GCMs and
scenarios. Caselton and Luo [4] presented a water resources example
of an application of the Dempster–Shafer approach and compared
results with those from a Bayesian scheme. Luo and Caselton [20]
presented aspects of the D–S approach that contribute to its appeal
when dealing with information sources on climate change through
examples. Recently, Raje and Mujumdar [31] used the Dempster–
Shafer theory for uncertainty modeling in development of a
methodology to constrain uncertainty using a nonstationary down-
scaling relationship. The present study analyses the D–S approach in
detail, and provides key insights into the applicability and advantages
of the D–S theory in uncertainty representation and combination as
compared to traditional uncertainty modeling approaches. A Bayesian
approach is presented which combines GCM and scenario uncertain-
ties to provide posterior distributions for each category of SSFI-4.
Results from the D–S and Bayesian approaches are compared and
contrasted in this paper, and the relative merits of each approach are
discussed. It is seen that both approaches have several unique
advantages, and could be used as complementary approaches in an
uncertainty modeling framework for prediction of hydrologic impacts
of climate change. The results from this work indicate an increasing
probability of extreme, severe and moderate drought and decreasing
probability of normal to wet conditions, as a result of decreasing
monsoon streamflow in the Mahanadi River due to climate change.

The paper is organized as follows. Section 2 presents the uncertainty
combination framework for hydrologic drought prediction using D–S
theory. Section3presents the basis of theBayesian approachused in this
work. Section 4 presents a case study application of the methodologies
to the Mahanadi River. Section 5 contains results and discussion.
Section 6 presents concluding remarks and potential for future research.

2. Uncertainty modeling using Dempster–Shafer theory

2.1. Dempster–Shafer Theory

Risk analysts recognize two fundamentally distinct forms of
uncertainty [14]: Type I uncertainty or aleatory uncertainty arising
from environmental stochasticity, inhomogeneity of materials, fluc-
tuations in time, variation in space or heterogeneity; and Type II or
epistemic uncertainty which arises from scientific ignorance, mea-
surement uncertainty, or other lack of knowledge. In the climate
modeling and regional impact assessment problem, for example, Type
I uncertainty typically arises from natural variability internal to the
climate system, whereas GCM and scenario uncertainties can be
classified as Type II uncertainty. Although probability theory is
traditionally used to characterize both types of uncertainty, critics
[35,41] claim that traditional probability theory using the frequentist
approach may not be capable of capturing epistemic uncertainty.
Bayesian probability applies traditional probabilistic methods to
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