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a b s t r a c t

Problems in hydrology and water management that involve both surface water and groundwater are
best addressed with simulation models that can represent the interactions between these two flow
regimes. In the current generation of coupled models, a variety of approaches is used to resolve sur-
face–subsurface interactions and other key processes such as surface flow propagation. In this study
we compare two physics-based numerical models that use a 3D Richards equation representation of
subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to
the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing
is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualiza-
tion. The coupling between the land surface and the subsurface is handled via an explicit exchange
term resolved by continuity principles in the first model (a fully-coupled approach) and by special
treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the sig-
nificant differences in formulation between the two models, we found them to be in good agreement
for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-
catchment, we examined saturation excess and infiltration excess runoff production under homoge-
neous and heterogeneous conditions, the dynamics of the return flow process, the differences in
hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such
as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and
time step size was found for the two models under saturation excess and homogeneous conditions.
Larger sensitivity and differences in response were observed under infiltration excess and heteroge-
neous conditions, due to the different coupling approaches and spatial discretization schemes used
in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest
for processes such as reinfiltration and ponding, although the differences between the hydrographs
of the two models decreased as mesh and step size were progressively refined. In return flow behav-
ior, the models are in general agreement, with the largest discrepancies, during the recession phase,
attributable to the different parameterizations of diffusion in the surface water propagation schemes.
Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualiza-
tions used in the two models produce very similar responses in terms of hydrograph shape and flow
depth distribution.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Surface and subsurface waters are not isolated components of
the hydrologic cycle, but instead interact in response to topo-
graphic, soil, geologic, and climatic factors [8]. The study of these
interactions has been addressed at both small (field and hillslope)

(e.g. [1,39]) and large (watershed to global) scales (e.g. [23,37]). A
number of hydrological models that incorporate some representa-
tion of groundwater–surface water interactions have been
developed over the past decades, including physically-based,
distributed-parameter models. This latter class of models, more rig-
orous but also more computationally intensive than empirical or
semi-empirical approaches, uses the shallow water equations to
describe surface flow, i.e., one- or two-dimensional approxima-
tions of the Saint–Venant equations for overland and/or channel
flow, coupled with a subsurface component that solves the
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three-dimensional equation for variably saturated flow, i.e., Rich-
ards’ equation (e.g. [41,28,33,18]). A comprehensive description
of the types of process representation in distributed models and
their inherent assumptions and limitations, together with a discus-
sion of comparison and assessment issues, is provided in Kampf
and Burges [19], Clarke [5], Furman [10], Ebel et al. [9], and Max-
well [24].

For physically-based coupled models, which are the focus of
this study, various schemes have been proposed for solving the
system of surface and subsurface equations and for resolving the
interactions across the land surface. The solution approaches can
be broadly classified as full coupling, sequential coupling, and
loose coupling, whereas the formulations for the exchange fluxes
are based on continuity principles, diffusion paradigms, boundary
conditions switching, or other schemes. In full coupling (e.g.
[41,33,20]), the governing equations are solved simultaneously;
in sequential coupling (e.g. [12,28,3]), they are solved separately,
with an explicit discretization used for at least one of the equations
or with an iterative cycle superposed on the overall system; in
loose coupling (e.g. [36,6]), the equations are again solved sepa-
rately, with the output from one regime (e.g., surface flow) simply
passed as input to the other, without iteration or other conditions
imposed.

Whereas the accuracy, robustness, and other performance fea-
tures of surface and subsurface numerical models have been
extensively documented (e.g. [35,42] for Saint–Venant approxi-
mations; [16,29] for Richards’ equation), there have been very
few assessments of coupled models based on these equations.
The purpose of this study is to provide such an assessment via
a comparative analysis of two process-based groundwater–sur-
face water models. One model, ParFlow [20,21], uses a full cou-
pling approach and continuity of pressures and fluxes across
the land surface to resolve the surface–subsurface interactions;
the other model, CATHY [2,3], is based on sequential coupling
with boundary condition switching to partition atmospheric
fluxes into infiltration (or exfiltration) and a change in surface
water storage. A comparison of these two very different models
provides a first opportunity to critically examine some key fea-
tures of coupled hydrological models. In addition to different
schemes for coupling and exchange flux resolution, the two mod-
els use different conceptualizations of surface routing: sheet flow
representation and a kinematic wave equation in ParFlow; rill
flow representation and a diffusion wave equation in CATHY.
Although not directly inherent to coupling issues, these addi-
tional differences are also worthy of assessment, given the high
interest in applying coupled hydrological models at catchment
and river basin scales where terrain features (slope, roughness,
etc.), and consequently surface flow conditions, can vary greatly.
Other differences between the models (e.g., ParFlow uses a finite
difference/finite volume discretization whereas CATHY uses finite
elements for the subsurface and finite differences for the surface)
will also have an effect on the intercomparison tests and will be
duly considered.

The intercomparison study is carried out through a series of
simple test cases subjected to step functions of rainfall followed
by a recession or evaporation period. The test cases involve a
sloping plane [11] and a tilted V-catchment [33]. The simulations
are designed to clearly expose model differences and similarities
under complex and realistic physical conditions. The first tests fo-
cus on the different treatments of the exchange fluxes between
the subsurface and surface domains and their sensitivity to fac-
tors such vertical mesh resolution, time step size, and slope angle.
A second set of tests is intended to evaluate the impact of the dif-
ferent conceptualizations for propagation of surface runoff in
terms of water depth distribution at the ground surface and tim-
ing and shape of the hydrograph.

2. Description of the models

The governing equations for the ParFlow model [20,25] are the
three-dimensional (3D) Richards equation for subsurface flow in
variably saturated soils and the kinematic wave approximation of
the Saint–Venant equation for overland and channel flow:
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where Ss is the specific storage coefficient [1/L], Sw = Sw(w) is the rel-
ative saturation [–], w is the subsurface pressure head [L], t is time
[T], / is the porosity [–], r is the gradient operator, q is the Darcy
flux [L/T], qs is a general source/sink term [1/T], Ks is the saturated
hydraulic conductivity tensor [L/T], Kr = Kr(w) is the relative hydrau-
lic conductivity function [–], z is the vertical coordinate pointing
downward [L], ws is the pressure at the ground surface (surface
ponding depth) [L], ~m is the depth-averaged velocity vector [L/T],
qr is the rainfall rate [L/T], and Sf,i and So,i are the gravity forcing
and friction slope terms, respectively [–], with i indicating the x
and y directions.

The governing equations for the CATHY model [2,3] are the 3D
Richards equation and the diffusion wave approximation of the
Saint–Venant equation:

SsSw
@w
@t
þ /

@Sw

@t
¼ r � ½KsKrðwÞðrwþ gzÞ� þ qss; ð5Þ

@Q
@t
þ ck

@Q
@s
¼ Dh

@2Q
@s2 þ ckqs; ð6Þ

where gz = (0,0,1)T (the vertical coordinate is positive upward), qss

represents distributed source (positive) or sink (negative) terms
[L3/L3T], Q is the discharge along the channel link [L3/T], ck is the
kinematic wave celerity [L/T], s is the hillslope/channel link coordi-
nate [L], Dh is the hydraulic diffusivity [L2/T], and qs is the inflow
(positive) or outflow (negative) from the subsurface to the surface
[L3/LT].

2.1. Subsurface flow

The three-dimensional Richards equation is solved in ParFlow
using a cell-centered finite difference scheme with harmonic aver-
ages of the saturated hydraulic conductivity and a one-point up-
stream weighting of the relative permeability function. CATHY
uses a Galerkin finite element spatial integrator using tetrahedral
elements and linear basis function. Both models employ an implicit
backward Euler scheme for the discretization in time of Richards’
equation. The resulting discrete equation is solved in ParFlow by
a Newton–Krylov nonlinear solver [17] and in CATHY by Picard
or Newton iteration [34].

2.2. Surface routing

The kinematic wave Eqs. (3) and (4) in ParFlow are discretized
in space with an upwind finite volume scheme and in time with
an implicit backward Euler method. The surface flow equation is
solved by posing two types of boundary conditions: the gradient
and critical depth outlet conditions, consisting respectively in a
prescribed flux and water depth condition. In CATHY the diffusion
wave Eq. (6) is discretized in space and time with a matched arti-
ficial dispersivity (MAD) scheme [38].

ParFlow uses a two-dimensional sheet flow conceptualization
for surface routing, whereby flow is assumed to be distributed in
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