
Quasilinear infiltration from an elliptical cavity

Kristopher L. Kuhlman a,*, Arthur W. Warrick b

a Department of Hydrology and Water Resources, University of Arizona, 1133 East James E. Rodgers Way, Tucson, AZ 85721, USA
b Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721, USA

a r t i c l e i n f o

Article history:
Received 22 February 2008
Received in revised form 16 April 2008
Accepted 18 April 2008
Available online 29 April 2008

Keywords:
Quasilinear
Richards’ equation
Analytic solution
Elliptic cylinder coordinates
Mathieu functions

a b s t r a c t

We develop analytic solutions to the linearized steady-state Richards equation for head and total flowrate
due to an elliptic cylinder cavity with a specified pressure head boundary condition. They are generaliza-
tions of the circular cylinder cavity solutions of Philip [Philip JR. Steady infiltration from circular cylindri-
cal cavities. Soil Sci Soc Am J 1984;48:270–8]. The circular and strip sources are limiting cases of the
elliptical cylinder solution, derived for both horizontally- and vertically-aligned ellipses. We give approx-
imate rational polynomial expressions for total flowrate from an elliptical cylinder over a range of sizes
and shapes. The exact elliptical solution is in terms of Mathieu functions, which themselves are general-
izations of and computed from trigonometric and Bessel functions. The required Mathieu functions are
computed from a matrix eigenvector problem, a modern approach that is straightforward to implement
using available linear algebra libraries. Although less efficient and potentially less accurate than the iter-
ative continued fraction approach, the matrix approach is simpler to understand and implement and is
valid over a wider parameter range.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A solution for flow from a long elliptic cylinder cavity is given in
two-dimensional elliptical coordinates for the quasilinear [26]
form of the steady unsaturated flow equation [31] in a homoge-
neous porous medium. The solution is an extension of one by Philip
[27] for flow from a circular cylinder cavity.

The approach taken here is to expand the linearized potential in
the natural eigenfunctions that arise in elliptical coordinates. This
technique has been utilized extensively in the physics literature
(e.g., [2,7,15,22,24,34], but the solution derived here for the current
problem’s boundary conditions is new.

Unsaturated porous media flow, specifically infiltration, is a
very non-linear process that is often solved numerically with finite
element codes such as HYDRUS-2D (e.g., [32]). Analytic solutions
to infiltration problems, restricted as they may be, often deliver
more insightful results due to their simplicity. They give solutions
with fewer potentially complicating auxiliary parameters. Pullan
[29] reviews the history of the quasilinear solution methodology
and compares numerous approaches for solving the linearized
Richards equation.

In the context of predicting furrow infiltration, Rawls et al. [30]
compared steady infiltration solutions for 1, 2, and 3 dimensions,
using the 2D point source solution of Philip [26] in the comparison.
The solution derived here for an elliptical shape is more realisti-

cally furrow-shaped; ellipses have the capability of simulating
the geometry associated with either wide or deep cavities and
strips. Warrick et al. [38] and Warrick and Lazarovitch [37] discuss
the impacts that dimensionality and ‘‘edge effects” have on infiltra-
tion from strips and parabolic-shaped furrows.

The elliptical solution derived here can represent the geometry
of a strip or furrow explicitly, although without surface or water
table boundary effects. It is a free-space solution, since it is valid
at large distance. A dry far-field condition is assumed, resulting
in no-flow far away from the ellipse. Including the effects of the
land surface (potentially intersecting the ellipse) would require
imposing a no-flow boundary condition. This homogeneous type
II boundary condition would become an inhomogeneous type III
boundary condition after applying the required non-linear trans-
formations [40]. A solution for flow from an elliptical cavity that
accounted for this boundary condition would most likely be
approximate in nature (e.g., a linearized AEM or gridded numerical
solution). An alternative approach would be to use the integral
expression of Lomen and Warrick [18, Eq. (5)] (with D ¼ 0, and
no dependence on Y or T) to include the effects of a horizontal
evaporative or no-flow boundary. Similarly, Philip [28] and War-
rick [36, p. 276] indicate how to account for a water table condition
beginning with a known free-space solution. Using the solution de-
rived here in these integral relationships leads to integral expres-
sions that cannot be evaluated in closed form for general values
of the coordinates.

Bakker and Nieber [4] applied the analytic element method to
the quasilinear flow equation for the problem of uniform vertical

0309-1708/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advwatres.2008.04.009

* Corresponding author. Tel.: +1 520 621 1380; fax: +1 520 621 1422.
E-mail address: kuhlman@hwr.arizona.edu (K.L. Kuhlman).

Advances in Water Resources 31 (2008) 1057–1065

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier .com/ locate/advwatres

mailto:kuhlman@hwr.arizona.edu
http://www.sciencedirect.com/science/journal/03091708
http://www.elsevier.com/locate/advwatres


flow through ellipses of different material properties. Their ap-
proach is quite general, but to obtain a solution for multiple ele-
ments involves performing two nested iterations. A non-linear
boundary-matching iteration is nested within an outer iteration
that accounts for the effects elements have on one another. In
the analysis presented here, no iterations are required to compute
the solution, outside of those potentially needed to compute the
required Mathieu functions (also needed for the AEM solution).

Mathieu functions are the special functions that arise as solu-
tions to the Helmholtz equation in elliptic-cylinder coordinates
[3,5,23,24]. We use a modern matrix eigenvector approach [6,33],
allowing all the required functions and coefficients to be computed
using any combination of widely available eigensolution (e.g., Mat-
lab [20] or LAPACK [12]) and Bessel function routines.

2. Mathematical formulation

2.1. Quasilinear governing equation

The steady-state unsaturated porous media flow equation [31]
is

br � ðKðhÞ brhÞ ¼ oK
oz
; ð1Þ

where KðhÞ is hydraulic conductivity ½L=T�, a non-linear function of
pressure head, h½L�. Flow is driven by gradients in hydraulic head,
U ¼ h� z, the sum of pressure and elevation heads (z positive
down). Hats indicate dimensional differential operators. The Kirch-
hoff transformation [16] is used to linearize (1); it is

HðhÞ ¼
Z h

�1
KðuÞdu; ð2Þ

where u is a dummy variable and H is matric flux potential ½L2=T�.
Applying (2) leads to

br2H ¼ 1
K

dK
dh

oH
oz

: ð3Þ

The Gardner [10] exponential KðhÞ distribution is used to simplify
(3) further, by assuming the linearizing relationship KðhÞ ¼ K0eah,
where h < 0 for unsaturated flow, a is the sorptive number ½1=L� (re-
lated to pore size) and K0 is K at saturation. With the Gardner dis-
tribution, (3) becomes

br2H ¼ a
oH
oz

; ð4Þ

the steady quasilinear form of Richards’ equation. The quasilinear
approximation was first extensively studied by Philip [26]. Pullan
[29] summarizes its benefits and limitations.

2.2. Elliptical geometry

A long elliptical pipe is represented as a surface of constant ra-
dius in two-dimensional elliptic-cylinder coordinates, where the
variation along the length of the pipe is negligible. For a horizontal
ellipse, the major axis is parallel to the land surface and the posi-
tive z-axis points down (see Fig. 1). The elliptical angular coordi-
nate starts at the positive x-axis and increases clockwise,
0 6 w 6 2p. Cartesian coordinates ðx; zÞ½L� are defined in terms of
the dimensionless elliptical coordinates ðg;wÞ as

x ¼ f coshðgÞ cosðwÞ; z ¼ f sinhðgÞ sinðwÞ; ð5Þ

where f is the semi-focal distance ½L�; the cylindrical boundary is
g ¼ g0. The eccentricity of the ellipse is a dimensionless quantity

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

s
; ð6Þ

equivalently f ¼ ea, that ranges from 0 (circle) to 1 (line segment
joining the foci). The pair ða; eÞ completely specifies the geometry
of the problem; a is a measure of the size of the cavity, while e is
related to its shape. The circumference of the ellipse, c½L�, cannot
be evaluated exactly in closed form. It is defined by an elliptic inte-
gral, but can be approximated using one of several formulas. We use
the simple YNOT expression [19]

c � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay þ byy

p
; ð7Þ

where y ¼ lnð2Þ= lnðp2Þ and the error in the approximation is at most
0.4%.

2.3. Non-dimensionalizing

Because of the problem’s homogeneity, it can be made dimen-
sionless with respect to the porous medium’s sorptive number.
Dimensionless lengths are defined

A
a
¼ B

b
¼ F

f
¼ C

c
¼ X

x
¼ Z

z
¼ a

2
; ð8Þ

where capital letters are dimensionless versions of lower-case vari-
ables. The dimensionless matric flux potential is # ¼ H=Hðg0Þ. The
boundary condition on the ellipse is specified pressure head,
hðg0Þ ¼ h0. For simplicity, the far-field boundary condition is no-
flow

hðg!1Þ ¼ �1; H½hðg!1Þ� ¼ 0; ð9Þ

this corresponds to an assumption of dry conditions away from the
cutout, i.e., the flow field is dominated by the moisture infiltrating
from the ellipse.

The linearized flow equation (4) in dimensionless form, after
the exponential substitution # ¼ HeZ , becomes the Yukawa [9] or
modified Helmholtz equation

r2H ¼ H; ð10Þ

subject to the boundary conditions

Hðg0;wÞ ¼ e�F sinhðg0Þ sinðwÞ ¼ e�B sinðwÞ; ð11Þ
Hðg!1Þ ¼ HeF sinhðgÞ sinðwÞ ! 0 ð12Þ

in elliptical coordinates. Many solutions to (10) are available in the
physics literature, though the combination of boundary condition
(11) and elliptical geometry makes the solution derived here
unique.

The dimensionless pressure ðWÞ and hydraulic ðUÞ heads are de-
fined and related to # by

W ¼ h
h� h0

¼ 1
2

lnð#Þ; U ¼ U
U� h0

¼ 1
2

lnð#Þ � Z; ð13Þ

where we take h0 ¼ 0 for simplicity.

Fig. 1. Elliptical coordinates g (radial) and w (angular); a; b, and f are the semi-
major, -minor, and -focal lengths.
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