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Abstract

This work is the fourth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling
flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation
presented in previous works are built upon by formulating macroscale models for conservation of mass, momentum, and energy, and the
balance of entropy for a species in a phase volume, interface, and common curve. In addition, classical irreversible thermodynamic rela-
tions for species in entities are averaged from the microscale to the macroscale. Finally, we comment on alternative approaches that can
be used to connect species and entity conservation equations to a constrained system entropy inequality, which is a key component of the
TCAT approach. The formulations detailed in this work can be built upon to develop models for species transport and reactions in a
variety of multiphase systems.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is the fourth in a series of efforts intended to
yield complete, rigorous, closed models that describe trans-
port phenomena in multiscale porous medium systems
using the thermodynamically constrained averaging theory
(TCAT) approach. The first paper [18] provides an over-
view of the general TCAT approach, which is built on aver-
aged conservation and thermodynamic equations that
constrain an entropy inequality. The second paper provides
the mathematical fundamentals and theorems that are used
to generate needed macroscale equations [25]. The third
paper illustrates the application of the method for single-
fluid-phase, single-species flow in a porous medium [19].
In the present work, we develop additional fundamental

components of the theory to enable the subsequent build-
ing of rigorous, closed models for multispecies systems.

The composition of a phase is of central importance for
modeling many porous medium systems. Example applica-
tions include saltwater intrusion; contaminant fate, trans-
port, and remediation; irrigation and fertilization; aquifer
storage and recovery of treated drinking water; and analysis
of the effects of nuclear waste disposal. Models used to
describe such systems are typically based upon the advec-
tive–dispersive equation, assuming a Fickian form of the
dispersion process [11]. These models are typically posited
directly at the macroscale and are not usually thermody-
namically constrained. It is also commonplace for the vari-
ables that appear in such macroscale equations to lack
precise definitions and connections to microscale quantities.

Of further significance is the general consensus that het-
erogeneity at the macroscale, typical of most natural
systems, leads to the limited usefulness of the advective–
dispersive equation for many problems of interest (e.g.

0309-1708/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.advwatres.2007.11.004

* Corresponding author.
E-mail addresses: casey_miller@unc.edu (C.T. Miller), GrayWG@

unc.edu (W.G. Gray).

www.elsevier.com/locate/advwatres

Available online at www.sciencedirect.com

Advances in Water Resources 31 (2008) 577–597

mailto:casey_miller@unc.edu
mailto:GrayWG@ 


Nomenclature

Roman letters

b entropy source density
C Greens’ deformation tensor
d rate of strain tensor
E internal energy density
ET total energy density
E the set of entities
EC the set of common curve entities
EI the set of interface entities
EP the set of phase volume entities
EPt the set of common point entities
E conservation of energy equation
E internal energy
Ec connected set of entities
e unit vector tangent to a common curve and ori-

ented positive outward
eii microscale intra-entity internal energy transfer

rate from all other species in entity i to the i spe-
cies per unit measure of the i entity

eTii total microscale energy transferred intra-entity
from all other species in entity i to the i species
per unit measure of the i entity

eii
T total microscale energy transferred intra-entity

from all other species in entity i to the i species
per unit measure of the i entity

F thermodynamic functional to be minimized
f general variable
f general vector variable
f 0 general microscale vector tangent to an interface
f 00 general microscale vector tangent to a common

curve
g acceleration vector due to an external force,

such as gravity
h heat source density
I identity tensor
I0 surface identity tensor
J index set of entities
J C index set of common curve entities
J Cs index set of common curve entities that include

an intersection with the solid phase volume
J C=s index set of common curve entities that do not

include an intersection with the solid phase vol-
ume

J c index set of connected entities
J f index set of fluid-phase volumes
J I index set of interface entities
J Is index set of interface entities that include an

intersection with the solid phase volume
J I=s index set of interface entities that do not in-

clude an intersection with the solid phase vol-
ume

J P index set of phase volume entities
J Pt index set of common point entities

J Pti index set of all microscale points in the REV
that describes Xi

J Pts index set of common point entities that include
an intersection with the solid phase volume en-
tity

J Pt=s index set of common point entities that do not
include and intersection the solid phase volume
entity

J s index set of species
J si index set of species in entity i
js solid-phase Jacobian
KE macroscale kinetic energy per unit mass due to

microscale velocity fluctuations
M mass
M variational constant subject to mass conserva-

tion constraint
M conservation of mass equation

M
ij!ii

transfer of mass of species i in the j entity to the
i species in the i entity per unit volume per unit
time

MEi

ij!ii
transfer of energy from the j entity to the i en-
tity due to inter-entity mass transfer of species i
per unit volume per unit time

Mvi

ij!ii
transfer of momentum from the j entity to the i
entity due to inter-entity mass transfer of species
i per unit volume per unit time

Mgi

ij!ii
transfer of entropy from the j entity to the i en-
tity due to inter-entity mass transfer of species i
per unit volume per unit time

ni outward unit normal vector from entity i
P conservation of momentum equation

general microscale property
p fluid pressure
pii microscale intra-entity momentum transfer rate

from all other species in entity i to the i species
per unit measure of the entity

pii macroscale intra-entity momentum transfer rate
from all other species in entity i to the i species
per unit measure of the entity

Q
jj!ii

transfer of energy from species in the j entity to
the i species in the i entity resulting from heat
transfer and deviation from mean processes
per unit volume per unit time

q non-advective heat flux density vector
rii microscale intra-entity reaction rate resulting in

the production of species i in entity i from all
other species per unit measure of the entity

rii macroscale intra-entity reaction rate resulting in
the production of species i in entity i from all
other species per unit measure of the entity

S entropy balance equation
S entropy

set of all species
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