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a b s t r a c t

Matheron and de Marsily [Matheron M, de Marsily G. Is the transport in porous media always diffusive? A
counter-example. Water Resour Res 1980;16:901–17] studied transport in a perfectly stratified infinite
medium as an idealized aquifer model. They observed superdiffusive solute spreading quantified by
anomalous increase of the apparent longitudinal dispersion coefficient with the square root of time. Here,
we investigate solute transport in a vertically bounded stratified random medium. Unlike for the infinite
medium at asymptotically long times, disorder-induced mixing and spreading is uniquely quantified by a
constant Taylor dispersion coefficient. Using a stochastic modeling approach we study the effective mix-
ing and spreading dynamics at pre-asymptotic times in terms of effective average transport coefficients.
The latter are defined on the basis of local moments, i.e., moments of the transport Green function. We
investigate the impact of the position of the initial plume and the initial plume size on the (highly anom-
alous) pre-asymptotic effective spreading and mixing dynamics for single realizations and in average.
Effectively, the system ‘‘remembers” its initial state, the effective transport coefficients show so-called
memory effects, which disappear after the solute has sampled the full vertical extent of the medium.
We study the impact of the intrinsic non-ergodicity of the confined medium on the validity of the sto-
chastic modeling approach and study in this context the transition from the finite to the infinite medium.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Transport in stratified media has been frequently studied in the
groundwater literature as a model for transport in geological media.
Natural sandy aquifers often exhibit geological and geostatistical
stratification characterized by a much larger horizontal than verti-
cal correlation length (see, e.g. [2] and literature therein). In the lim-
iting case of infinite correlation length in the horizontal direction,
the hydraulic conductivity varies only along the vertical. Following
the deterministic work of Marle et al. [3], Matheron and de Marsily
[1] studied this perfectly stratified medium as an idealized aquifer
model. They found that the apparent longitudinal dispersion coeffi-
cient grows superdiffusively with the square root of time and used
this result to demonstrate that transport in porous media is not al-
ways diffusive. Transport in an infinite perfectly stratified random
medium has been investigated extensively (e.g. [4–11]) using sto-
chastic modeling as a systematic means to quantify the impact of
spatial heterogeneity on large scale transport. The latter has been
studied in terms of the average solute distribution density and its
moments, its spatial and temporal moments as well as in terms of
(apparent) longitudinal dispersion coefficients.

The superdiffusive growth of the apparent longitudinal disper-
sion coefficient is caused by strong spatial correlation as quantified

by the Lagrangian velocity correlation (e.g. [12,13]). These aspects
of transport in stratified flows have been extensively studied in the
physics literature (e.g. [14–17]).

In contrast to the unbounded stratified medium, for which
transport is superdiffusive for all times, for a vertically (i.e., trans-
verse to the direction of stratification) bounded medium, transport
becomes eventually Gaussian and can be completely characterized
by a constant macrodispersion or ‘‘Taylor dispersion-type” coeffi-
cient. Several authors have addressed the issue of enhanced disper-
sion and effective transport dynamics for bounded stratified
random media and shear flows in general (e.g. [2,18–21]). Taylor
[22] was the first to quantify enhanced solute dispersion in the
parabolic (stratified) Hagen–Poiseuille flow through a tube by the
well known Taylor dispersion coefficient

D� / a2U2

DT
; ð1Þ

where a is a measure for the vertical extent of the flow do-
main, U the average flow velocity and DT the transverse local
dispersion coefficient, i.e. the transverse component of the (con-
stant) dispersion tensor at local scale. The Taylor dispersion
coefficient (1) reflects the mechanism that leads to enhanced
spreading and mixing in stratified flows, namely, the solute’s
sampling of the vertical velocity contrast ðU2Þ by local trans-
verse dispersion ðDTÞ. The process is controlled by the disper-
sion time scale sD
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sD ¼
a2

DT
; ð2Þ

which measures the time for the solute to sample the whole vertical
velocity contrast. For times large compared to the dispersion time
scale, t � sD, the Taylor dispersion coefficient D� quantifies both
large scale spreading and mixing as well as the evolution of the sol-
ute concentration.

In hydrological applications, however, this dispersion time
scale can be large (of the order of 103 years). At the relevant
pre-asymptotic times, the constant Taylor or macrodispersion
coefficient overestimates actual solute spreading and mixing.
For risk assessment studies that focus on the maximum extent
of a contaminant plume, macrodispersion gives simulates a
worst case scenario and maybe the observable of choice. If one
is interested in remediation strategies relying on the mixing of
contaminated water with an injected reactant, the correct quan-
tification of the pre-asymptotic mixing mechnisms is mandatory
in order to be able to realistically assess the efficiency of the
remediation strategy. Macrodispersion simulates to high a mix-
ing efficiency and can significantly overestimate the performance
of a remediation strategy.

At pre-asymptotic times, i.e., for times smaller than sD, solute
spreading and mixing is controlled by local transverse dispersion,
which activates the vertical velocity contrast as a macroscopic
spreading and mixing mechanisms. As outlined in [23], transverse
dispersion mixes the solute vertically. The velocity contrast expe-
rienced by the solute through vertical mixing stretches the plume
and increases the plume surface but not the volume occupied by
the solute, which is termed spreading [23]. Transverse dispersion
then again leads to vertical mass exchange between the solute lay-
ers and smoothes concentration contrasts out, which leads to large
scale mixing.

Here we investigate these mechanisms for a stratified random
medium in terms of suitably defined second centered moments
of the solute plume. This analysis is based on the moments of
the transport Green function, i.e., the solute distribution that
evolves from a point-like initial distribution. The latter allows for
the construction of observables that measure spreading and/or
mixing of the solute. Many studies of solute dispersion in single
realization focus on the vertically averaged (over the directions
perpendicular to the direction of stratification) solute concentra-
tion and in stochastic frameworks on ensemble averaged concen-
trations. The vertically averaged solute concentration quantifies
(advective) solute spreading within the initial plume [24], the
ensemble averaged concentration quantifies an artificial spreading
effect due to sample to sample fluctuations of the plume’s center of
mass from realization to realization [25]. While for transport in
heterogeneous media these fluctuations vanish in average for time
large compared to the dispersion scale [26], for an infinite stratifies
random medium they persist [10]. Furthermore, averaging over a
large initial plume or stochastic averaging wipes out possible
memory effects that account for the impact of the initial position
or initial plume size on the effective transport behavior. We study
these mechanisms systematically for single realizations and in sto-
chastic average for confined stratified media using explicit analyt-
ical expressions and numerical random walk simulations. We
discuss the stochastic approach for such confined scenarios and
the impact of finite size effects on the ergodicity of transport.

In Section 2, we present the specific aquifer model under con-
sideration, which is characterized by a linear covariance function
for the conductivity in vertical direction. Section 3 introduces the
concepts and defines the transport coefficients used to investigate
the different mechanisms described above. This section presents
analytical and numerical solution methods axial moment equa-
tions and random walk simulations, respectively. We derive expli-

cite analytical solutions for the ensemble averaged transport
coefficients. Section 4 applies these concepts and methods for the
systematic analysis of mixing and spreading, Section 5 concludes
the paper.

2. Model

We study transport of a conservative solute in a confined hori-
zontally stratified medium. The d-dimensional flow and transport
domain, denoted by Xd, is assumed to be of infinite extension at
least in the one-direction and finite only in one of the transverse
directions.

2.1. Flow and transport in stratified media

Flow through a stratified porous medium is characterized by
the Darcy equation (e.g. [27])

uðxÞ ¼ �KðyÞ
/
rhðxÞ; ð3Þ

where uðxÞ is the pore velocity, / is the constant porosity, x is the
position vector in Xd and y ¼ ðx2; . . . ; xdÞT is the position vector in
the ðd� 1Þ-dimensional subdomain X, with Xd ¼ X� R. In the fol-
lowing, for simplicity constant porosity is set to 1. The hydraulic
conductivity is denoted by KðyÞ and varies only in X, hðxÞ is the
hydraulic head. The flow is driven by a constant head gradient J,
which is aligned with the direction of stratification, J ¼ �Je1, where
e1 is the unit vector in one-direction. Together with the incompress-
ibility condition r � uðxÞ ¼ 0, this boundary condition leads to the
exact solution (e.g. [11])

uðxÞ ¼ uðyÞe1 ¼ KðyÞJe1: ð4Þ

Advective–dispersive transport of a conservative solute in the
stratified flow field (4) is given by

ocðx; tÞ
ot

þ uðyÞ ocðx; tÞ
ox1

�rDrcðx; tÞ ¼ 0: ð5Þ

The (constant) local dispersion tensor D is assumed to be diag-
onal, Dij ¼ dijDij with D11 ¼ DL and Dii ¼ DT for i > 1.

As initial condition, we consider an instantaneous solute injec-
tion at time t ¼ 0

cðx; t ¼ 0Þ ¼ qðxÞ; ð6Þ

where the initial distribution qðxÞ is normalized to one. As the strat-
ified flow velocity is divergence-free, this normalization is con-
served for all times. We study transport of a solute evolving from
a point-like injection and from an extended source perpendicular
to stratification. Both initial conditions will be described in the fol-
lowing. The boundary conditions for cðx; tÞ are

lim
x1!�1

cðx; tÞ ¼ 0; n � rcðx; tÞjx2oXd ¼ 0; ð7Þ

where oXd is the boundary of the transport domain Xd, and n is the
outward pointing unit vector perpendicular to the domain
boundaries.

According to the Duhamel principle, the concentration distribu-
tion cðx; tÞ can be written as

cðx; tÞ ¼
Z

Xd
dx0qðx0Þgðx; tjx0;0Þ; ð8Þ

where the Green function gðx; tjx0; t0Þ solves the advection–dispersion
equation (5) for qðxÞ ¼ dðx� x0Þ and the boundary conditions (7).

2.2. Stochastic model

We use a stochastic modeling approach to account for the im-
pact of spatial heterogeneity on the effective large scale transport
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