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Abstract

Non-invasive magnetic resonance microscopy (MRM) methods are applied to study biofouling of a homogeneous model porous
media. MRM of the biofilm biomass using magnetic relaxation weighting shows the heterogeneous nature of the spatial distribution
of the biomass as a function of growth. Spatially resolved MRM velocity maps indicate a strong variation in the pore scale velocity
as a function of biofilm growth. The hydrodynamic dispersion dynamics for flow through the porous media is quantitatively character-
ized using a pulsed gradient spin echo technique to measure the propagator of the motion. The propagator indicates a transition in trans-
port dynamics from a Gaussian normal diffusion process following a normal advection diffusion equation to anomalous transport as a
function of biofilm growth. Continuous time random walk models resulting in a time fractional advection diffusion equation are shown
to model the transition from normal to anomalous transport in the context of a conceptual model for the biofouling. The initially homo-

geneous porous media is transformed into a more complex heterogeneous porous media by the biofilm growth.
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1. Introduction

Experimental data on the impact of biological activity on
transport in porous media in three dimensions has been lim-
ited to bulk measurements of pressure drop and tracer
breakthrough curves [1,2]. Magnetic resonance (MR ) meth-
ods provide the ability to non-invasively monitor transport
processes and biomass accumulation and distribution [3-6].
The application of MR methods to study environmental sci-
ence (special issue J Env Qual 2002;31(2)) and biological
activity in porous systems [3] has been reviewed. MR studies
of transport reported in the hydrology literature have
tended to focus on application of spatially resolved velocity
imaging [7-9] from which the permeability can be rigor-
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ously determined [10]. In this paper, a short overview of
the measurement of scale dependent dispersion dynamics
by pulsed gradient spin echo (PGSE) MR is given, as much
of the research in this area has been reported in the physics,
engineering and MR literature [11-18].

The analysis of bioactivity applying these scale depen-
dent techniques, provides quantitative measurement of the
change in hydrodynamic dispersion dynamics due to bio-
fouling [6]. The MR data indicate a transition caused by
biofilm growth, from normal Gaussian dynamics due to a
Fickian dispersion process for flow through the homoge-
nous model media, to anomalous non-Gaussian dynamics
[19-21] due to non-Fickian dispersion [6]. The data is dis-
cussed in the context of fractional advection dispersion
equations and indicate the applicability of continuous time
random walk (CTRW) theory to model the transition [22—
25]. The biofilm growth alters the homogeneous porous
media system structure, increasing the system complexity
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[26] and transforming the porous media into a heteroge-
neous system. The dispersion data presented, clearly indi-
cate the ability of displacement scale dependent PGSE
MR methods to characterize anomalous transport [27].

2. Hydrodynamic dispersion

The classic theory of hydrodynamic dispersion in porous
media is based in large part on the work of G.I. Taylor who
first derived the celebrated Ornstein—Uhlenbeck process of
stochastic dynamics [28,29]. Taylor later demonstrated that
coarse graining [30] through averaging of continuum mod-
els results in effective Brownian motion processes [31,32].
The fundamental aspect of models of dispersion in porous
media is the resultant advection diffusion equation (ADE)
governing mass, or probability, conservation in the system.
An effective diffusion coefficient, i.e. dispersion coefficient,
dependent upon the fluctuations about the mean velocity,
quantifies transport in the system. Many theoretical
approaches to derive the conservation equation and the
corresponding transport coefficients have been applied
and result in consistent governing equations [33].

Averaging of the continuum mass conservation equa-
tions using generalized macrotransport theory based on
the method of moments [34] and stochastic process meth-
ods based on the central limit theorem [35], return the clas-
sical ADE. The ADE is applicable to homogeneous porous
media systems in which the dynamics are Gaussian in the
asymptotic time limit. In this case the dispersion coefficient
is a constant and the mean squared displacement, or posi-
tional variance, scales linearly in time. In systems in which
long range correlations in the transport dynamics occur
due to the heterogeneous nature of the porous media
system, non-local transport theories based on ensemble
averaging of the continuum momentum and mass conser-
vation equations [36] and nonequilibrium statistical
mechanics [37], among other methods, have been applied.
Dispersion coefficients in the non-local formulation are
dependent on the displacement length and time scale and
result in a mean squared displacement which scales non-lin-
early in time, the definition of anomalous diffusion [38].
More recently transport in heterogeneous porous media
has been modeled using the theory of CTRWs which lead
to fractional advection diffusion equation (FADE) mass
conservation models [19,20,25].

2.1. Normal diffusion: ADE

The theory of Brownian motion involves the averaging
or coarse graining of fast variables in a system, a separa-
tion of scales [30]. In the case of a colloidal particle sus-
pended in a liquid, the velocity fluctuations of the
particle occur rapidly relative to the position variation
and the treatment results in a Fokker—Planck, or Smolu-
chowski equation, governing the particle concentration or
probability [32]. As indicated above, the long time asymp-
totic behavior of the process is Gaussian with a constant

effective diffusion, ie. dispersion, coefficient, and linear
scaling of the mean squared displacement in time. In the
non-asymptotic short time regime the time dependence of
the mean squared displacement is quadratic in time consis-
tent with the ballistic motion of a particle with a constant
velocity. The Brownian motion process has been solved
for full time dependence and is the Ornstein—Uhlenbeck
stochastic process [28-30]. Preasymptotic time dependence
of the normal Brownian motion diffusion process, during
which the mean squared displacement transitions from
the short time quadratic time scaling behavior of the ballis-
tic regime, to the long time linear scaling of the diffusive
regime, to the long time linear scaling of the diffusive
regime, is in contrast to anomalous diffusion in which
non-linear time scaling of the mean squared displacement
persists for asymptotic times [21,38].

The mass, or probability, conservation equation for
axial z-direction flow in a porous media is given by the
ADE
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The time rate of change of the probability of a tracer, or
solute particle (molecule) P(Z,¢) having displacement Z
in time 7 is dependent on the advection due to the mean
velocity (v.) and the dispersion coefficient D*. The ADE
is Galilei invariant, meaning the distribution is invariantly
translated with the average velocity. The effective diffusion,
or dispersion, coefficient depends on the velocity
fluctuation autocorrelation function D*(4) = fOA(l -3
([v(¢ 4+ 1) = (v.)][v:(¢) — (v,)]) dt and can be written in time
dependent fashion where A is the observation time scale
[30]. The effective diffusion for the time dependent Brown-
ian motion Ornstein—Uhlenbeck process is recovered for an
exponential velocity fluctuation autocorrelation. In the
asymptotic limit, for times A4 much larger than the
correlation time of the process, D" =lim,_, . D*(4) =
Jo Aot + 1) = (v)][v-() — (v.)]) dr and the mean squared
displacement of the solute or tracer in the long time limit
is (Z(t)*) — (Z(t))* = 2D*t. The random fluctuations in
velocity about the mean velocity at the pore scale generate
an effective Brownian motion diffusion process at the mac-
roscopic scale. In classical continuum modeling of porous
media transport it is the averaging of the continuum equa-
tions of conservation of mass and momentum which pro-
vides the coarse graining that results in the Brownian
motion nature of the model.

2.2. Anomalous diffusion: FADE model of biofouling

The separation of scales which occurs in development of
the Brownian motion theory is the reason the ADE fails to
model macroscopic transport in systems with heterogeneity
over many scales. Correlated dynamics are generated by
the heterogeneities in structure and corresponding trans-
port properties, e.g. permeability, that results in non-local
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