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Abstract

We present a 3D network model with particle tracking to upscale 3D Brownian motion of non-reactive tracer particles subjected to a
velocity field in the network bonds, representing both local diffusion and convection. At the intersections of the bonds (nodes) various
jump conditions are implemented. Within the bonds, two different velocity profiles are used. At the network scale the longitudinal dis-
persion of the particles is quantified through the coefficient DL, for which we evaluate a number of methods already known in the lit-
erature. Additionally, we introduce a new method for derivation of DL based on the first-arrival times distribution (FTD). To validate
our particle tracking method, we simulate Taylor’s classical experiments in a single tube. Subsequently, we carry out network simulations
for a wide range of the characteristic Péclet number Pe‘ to assess the various methods for obtaining DL. Using the new method, addi-
tional simulations have been carried out to evaluate the choice of nodal jump conditions and velocity profile, in combination with vary-
ing network heterogeneity. In general, we conclude that the presented network model with particle tracking is a robust tool to obtain the
macroscopic longitudinal dispersion coefficient. The new method to determine DL from the FTD statistics works for the full range of Pe‘,
provided that for large Pe‘ a sufficiently large number of particles is used. Nodal jump conditions should include molecular diffusion and
allow jumps in the upstream direction, and a parabolic velocity profile in the tubes must be implemented. Then, good agreement with
experimental evidence is found for the full range of Pe‘, including increased DL for increased porous medium heterogeneity.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dispersion in porous media is of interest in many fields,
such as chemical, petroleum, civil and environmental engi-
neering [1]. It plays an important role in the accuracy of
predictions during reactive and non-reactive transport in
groundwater systems (porous media). In porous media,
dispersion is caused by two processes: Brownian motion
of solute molecules, or molecular diffusion and the velocity

differences among solute-carrying solvent-streamlines,
which is referred to as mechanical dispersion. The interplay
of these two phenomena leads to the hydrodynamic disper-
sion [2].

Because of its key role in the theory of mass transport,
the dispersion process has been studied for a considerable
time [3–6]. In general, two methodologies (models) have
been devised to describe dispersion viz the deterministic
(e.g., [7]), and probabilistic or statistical approaches (e.g.,
[8–11]). The mixing cell model is an example of the first,
whereas the particle tracking approach in combination
with the method of moments serves as an example of the
second approach. Dispersion is a scale- and velocity field-
dependent phenomenon [12]. At the continuum scale, Bear
[7] showed that dispersion takes the form of a second order
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tensor that depends not only on local variations of velocity
field but also on large-scale characteristics of the medium
[7,8]. This tensor is used in the convection–dispersion equa-
tion (CDE). Alongside theoretical developments in disper-
sion theory, experimental and numerical works have
emerged to determine the dispersion tensor [13,14]. Histor-
ical reviews of dispersion research can be found in [7,14–
22].

As mentioned above, dispersion originates from varia-
tion of velocity at the pore scale (Taylor scale), i.e., within
a pore cross-section, as well as from geometrical variation
of the length scale of the distribution of pores within a por-
ous medium. A first attempt to average these variations at
the pore scale to an effective property at the continuum
scale was made by Saffman [23]. Following Fatt [24], Saff-
man used a pore network model as a tool to include the
pore-scale physical phenomena. Since the work of Saffman,
2D network models, in combination with random-walker
particle tracking, have often been employed to upscale

the pore-scale dispersion coefficient to a network-scale
quantity [10,11,14,25–27]. However, so far only qualitative
agreement with experimental results has been obtained [10]
and a rigorous quantitative upscaling of multi-directional
Brownian walker (3D motion of material points) from
the Brownian sphere to the 3D pore network has not yet
been presented.

One of the main reasons that has prevented such rigor-
ous upscaling lies in the uncertainty of the mixing condi-
tions and transition probabilities at the intersection of
pores (nodes) in a network model [26–29]. The simplest
assumption is to take the transition probability at a node
proportional to the flow rates in the neighboring bonds
[5]. However, this method excludes the effect of molecular
diffusion at the nodes. A more sophisticated approach con-
sists of constructing a pattern of streamlines from inflowing
to outflowing bonds at a node, such that the intra-pore par-
ticle tracking can be continued from pore to pore [9,29].
This method has successfully been constructed in 2D, but

Nomenclature

hÆi ensemble average quantity
C, eC concentration [M L�3] and dimensionless con-

centration
D, DL, DT dispersion coefficients: effective, longitudinal

and Taylor [L2 T�1]
Dm, Dh molecular diffusion coefficient and mechanical

dispersion [L2 T�1]
fi,j advection–diffusion fraction factor of Sorbie–

Clifford formulation
f(k) intra-pore velocity function
H Heaviside integral
i, j the indices of nodes and bonds
kax Taylor’s coefficient for cross-section shape (e.g.,

1/48)
L, ‘ length of the pore-network and bond length [L]
PeL pore network (Column) Péclet number vL/DL

p(i, j) transition probability density function
Peb, PeT bond Péclet and Taylor’s Péclet numbers [–]
Peref a reference (conditional) threshold Bond Péclet

number [–]
Pe‘ characteristic Péclet number v‘/Dm [–]
qi,j, Q discharge, respectively, through bonds and pore-

network [L3 T�1]
R, eR radius [L] and aspect ratio (R/‘) of bonds (Tay-

lor’s tubes)
Dr radius vector of Brownian sphere [L]
Re Reynolds number (dimensionless)
Sc Schmidt number (dimensionless)
t, Dt time and time step of iteration [T]eT dimensionless time on network scale (vt/L)
U, u actual and mean velocity in the Taylor’s tubes

[L T�1]

v mean intrinsic velocity along the principle flow
direction in the pore network [L T�1]

WY, WZ transversal horizontal and vertical lengths of
the network (?X) [L]

x, y local reference system, x 2 [0,‘] along the axial
direction of fluid flow [L]

X, Y, Z global (network scale) reference system [L]
b an exponent parameter
/(Dr) Green’s probability function for Markov’s pro-

cesses
k dimensionless local radial coordinate
l ensemble average as specified with subscript

(e.g., lt and lX)
m kinematic viscosity of fluid [L2 T�1]
r2 second central spatial moment (variance) of

positions of particles with respect to a chosen
direction (e.g., r2

X ) [L2]
s dimensionless time on pore-scale (ut/‘)
n local axis (x/‘) along flow in a capillary [–]
- a factor in Sorbie–Clifford formulation (pR2)/‘

[L]
u polar angle of radius vector in Brownian spher-

ical coordinate system [0,p]
w deviate of the Green’s function [–]
f tortuosity [–]
h azimuthal angle of radius vector in Brownian

spherical coordinate system [0, 2p]
T, m, L, b subscripts indicate Taylor, molecular, Longi-

tudinal and bond
CDE convection–dispersion equation
(C) FTD (cumulative) first-arrival times distribution
SPD spatial position distribution
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