
Computer Networks 100 (2016) 75–89 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

An architecture for client virtualization: A case study 

Syed Arefinul Haque 

a , Salekul Islam 

a , ∗, Md. Jahidul Islam 

a , 
Jean-Charles Grégoire 

b 

a United International University, Dhaka, Bangladesh 
b INRS-EMT, Montréal, Canada 

a r t i c l e i n f o 

Article history: 

Received 30 November 2015 

Revised 17 February 2016 

Accepted 18 February 2016 

Available online 26 February 2016 

Keywords: 

Edge cloud 

P2P 

BitTorrent 

Virtual client 

Cloud-based server 

Web-RTC 

a b s t r a c t 

As edge clouds become more widespread, it is important to study their impact on tradi- 

tional application architectures, most importantly the separation of the data and control 

planes of traditional clients. We explore such impact using the virtualization of a Peer- 

to-Peer (P2P) client as a case study. In this model, an end user accesses and controls the 

virtual P2P client application using a web browser and all P2P application-related control 

messages originate and terminate from the virtual P2P client deployed inside the remote 

server. The web browser running on the user device only manages download and upload of 

the P2P data packets. BitTorrent, as it is the most widely deployed P2P platform, is used to 

validate the feasibility and study the performance of our approach. We introduce a proto- 

type that has been deployed in public cloud infrastructures. We present simulation results 

which show clear improvements in the use of user resources. Based on this experience we 

derive lessons on the challenges and benefits from such edge cloud-based deployments. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

A new trend in service deployment in the Internet, 

based on cloud computing and virtualization, shifts the lo- 

cation of applications and infrastructures from the user de- 

vice to the network to reduce the costs associated with 

the management of hardware and software resources [1] . 

In such systems, service providers can provide simplified 

software installation, maintenance and update [2] . As cloud 

technology has become more popular, we have seen the 

emergence of edge clouds [3] , that is, datacenters de- 

ployed by Internet access providers, in close proximity 

to customers. With such facilities comes new opportuni- 

ties to shift traditional computer based applications, which 

could not otherwise have easily been virtualized because 

∗ Corresponding author. Tel.: +880 1820182777. 

E-mail addresses: arefin@cse.uiu.ac.bd (S.A. Haque), 

salekul@cse.uiu.ac.bd (S. Islam), jahid@cse.uiu.ac.bd (Md.J. Islam), 

gregoire@emt.inrs.ca (J.-C. Grégoire). 

of their complex control plane, towards the cloud. Peer- 

to-peer (P2P) applications would be an example of such 

applications. 

P2P networks are popular tools for content-sharing be- 

cause they provide better scalability and fault tolerance 

than the traditional client-server model of computing. A 

P2P network can be described as a network of cooperat- 

ing peers that work together to complete tasks and share 

resources in the Internet. Such a network is composed 

of numerous distributed, heterogeneous, autonomous, and 

highly dynamic peers with which participants share a part 

of their own resources such as processing power, stor- 

age capacity, software, and content [4] . P2P networks have 

no single point of failure and the network can grow and 

shrink without sacrificing the functionality of the system. 

Bandwidth utilization is better in such networks as the 

peers communicate directly with each other rather than 

through a hub which would present a bottleneck [5] . 

P2P applications are often used for file sharing. One 

example of a popular P2P file sharing application is 

http://dx.doi.org/10.1016/j.comnet.2016.02.020 

1389-1286/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.comnet.2016.02.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.02.020&domain=pdf
mailto:arefin@cse.uiu.ac.bd
mailto:salekul@cse.uiu.ac.bd
mailto:jahid@cse.uiu.ac.bd
mailto:gregoire@emt.inrs.ca
http://dx.doi.org/10.1016/j.comnet.2016.02.020


76 S.A. Haque et al. / Computer Networks 100 (2016) 75–89 

BitTorrent. Large corporations like the Blizzard Inc. use P2P 

systems to simultaneously distribute bandwidth-intensive 

content to thousands of users without requiring major in- 

frastructure investments [6] . On-demand media streaming 

is another popular P2P application. PPTV [7] delivers video 

content by streaming but peers can watch and share dif- 

ferent parts of a video at the same time thus reducing 

server load [8] . Distributed P2P file storage systems like 

Freenet [9] anonymously publish, replicate and retrieve 

data distributed among peers. Skype [10] is a P2P appli- 

cation which enables voice and video calls over the Inter- 

net to any other Skype user. P2P model can even be used 

to virtualize physical objects and service construction pro- 

cesses on smart spaces [11] . Several distributed scientific 

projects like Seti@Home [12] use P2P public distributed 

computing to share processing cycles. BitTorrent Sync [13] 

is a recent addition to this paradigm that synchronizes files 

between devices on a local network, or between remote 

devices over the Internet. 

For running such P2P applications a user normally has 

to install a client application on her device. The single 

most important task of these applications is to exchange 

data between peers, but apart from that, they may also 

perform routing/forwarding, content validation (e.g. hash 

checking) and implement different mechanisms for effi- 

cient bandwidth usage. As a result these client applications 

consume various resources including processing power, 

memory and bandwidth. Also, NAT traversal is an issue in 

P2P applications as most of the peers usually do not have 

globally routable IP addresses [14] . A local application re- 

quires a prior installation and has to be regularly updated 

for maintenance, which can be a burden for the user. 

In this paper we explore how P2P applications bene- 

fit from virtualization in an edge cloud environment and 

study the architectural tradeoffs. For this process, we intro- 

duce SimpleBit , a virtual terminal-based P2P client which 

follows the BitTorrent protocol but is deployed on a re- 

mote cloud server. This architecture was first introduced 

in [15] , albeit very briefly. An end user accesses and con- 

trols SimpleBit using a standard web browser, which re- 

duces the requirements and the load on user devices by 

offloading the control and session management tasks to 

the remote server. We study two different architectures of 

SimpleBit: 

1. A P2P-type direct download architecture where the 

files are downloaded directly from the peers to the 

end user’s device. 

2. A surrogate-based proxy downloader where the files 

are first downloaded by the surrogate server and 

then transferred to the end user’s device. 

The rest of the paper is organized as follows: Section 2 

briefly describes BitTorrent and discusses a detailed 

overview of how the BitTorrent client works. Section 3 

introduces and discusses virtualization. In Section 4 we 

present the architecture of SimpleBit virtual P2P client. 

We have designed two orthogonal models: SimpleBit with 

proxy downloader is explained with its implementation 

in Section 5 and SimpleBit with P2P download is pre- 

sented with simulation results in Section 6 . In Section 7 

we explain the lessons we have learnt on the challenges 

and benefits from the edge cloud-based deployments. In 

Section 8 we summarize and compare existing effort s that 

are related to our work. Finally, Section 9 concludes the 

paper. 

2. Dissecting BitTorrent 

BitTorrent is the most popular P2P application for dis- 

tributing large size files. It is implemented as a hybrid P2P 

system. Most of the interactions are done directly between 

peers but initial and further occasional interactions with 

a server are required for locating peers [16] . A user gets 

the information about the peers using a meta-information 

(metainfo) file (or metafile). The architecture of BitTorrent 

is shown in Fig. 1 . It can be summarized in the following 

points: 

1. A peer willing to download a shared content has 

to download the corresponding metafile from a web 

server and uses it to identify a tracker for that con- 

tent. 

2. The peer contacts the tracker and requests a list of 

peers that are already participating in the torrent 

(i.e., sharing that content). 

3. The tracker replies with a list of peers with their IP 

address and access port. 

4. The peer selects a number of peers from the list pro- 

vided by the tracker and establishes a connection 

with them. 

5. When connections are established, the peer ex- 

changes pieces of that file with the neighbors. 

A set of peers using the same metafile to share a par- 

ticular file are part of the same swarm . A tracker can in- 

troduce the newly joined peer to multiple swarms at the 

same time. A file is divided into fixed-size pieces and 

peers exchange the pieces with each other. When a piece 

is downloaded its SHA1 hash is computed and compared 

with the value in the metafile. If the values match then 

the piece is declared downloaded and made available for 

downloading to other peers. 

BitTorrent uses pipelining to keep the TCP connections 

operating at full capacity [17] . For this reason each piece is 

divided into many sub-pieces (usually 16 KB-sized) which 

are called blocks or chunks. To reduce the load on seeders 

(a peer who has access to the whole shared file) a peer 

downloads pieces not only from the seeders, but also from 

other peers (which are called leechers). 

In this section, we have carefully studied the compo- 

nents of the architecture of BitTorrent based on its speci- 

fications [18] . Then we have arranged them into different 

modules from a developer’s perspective. The modules are 

identified as part of either data plane or control plane, or 

both. We define the control plane as the part of the ar- 

chitecture which is concerned with drawing up the net- 

work map, or handling state oriented messages between 

other peers or servers. Otherwise, the data plane is de- 

fined as the part where the actual data is transferred be- 

tween the participating peers. Implementation of a full Bit- 

Torrent system can be divided into three distinct parts, 

as follows. 



Download English Version:

https://daneshyari.com/en/article/452783

Download Persian Version:

https://daneshyari.com/article/452783

Daneshyari.com

https://daneshyari.com/en/article/452783
https://daneshyari.com/article/452783
https://daneshyari.com

