
Computer Networks 94 (2016) 231–249

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Auction-based cloud service differentiation with service level

objectives

Jianbing Ding a,b,∗, Zhenjie Zhang c, Richard T. B. Ma d, Yin Yang e

a School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
b SYSU-CMU Shunde International Joint Research Institute, Shunde, China
c Advanced Digital Sciences Center, Illinois at Singapore Pte. Ltd., Singapore
d School of Computing, National University of Singapore, Singapore
e College of Science and Engineering, Hamad Bin Khalifa University, Qatar

a r t i c l e i n f o

Article history:

Received 28 April 2015

Revised 14 August 2015

Accepted 4 November 2015

Available online 10 November 2015

Keywords:

Cloud computing

Service differentiation

Auction

MapReduce

a b s t r a c t

The emergence of the cloud computing paradigm has greatly enabled innovative service mod-

els, such as Platform as a Service (PaaS), and distributed computing frameworks, such as

MapReduce. However, most existing cloud systems fail to distinguish users with different

preferences, or jobs of different natures. Consequently, they are unable to provide service

differentiation, leading to inefficient allocations of cloud resources. Moreover, contentions on

the resources exacerbate this inefficiency, when prioritizing crucial jobs is necessary, but im-

possible. Motivated by this, we propose Abacus, a generic resource management framework

addressing this problem. Abacus interacts with users through an auction mechanism, which

allows users to specify their priorities using budgets, and job characteristics via utility func-

tions. Based on this information, Abacus computes the optimal allocation and scheduling of

resources. Meanwhile, the auction mechanism in Abacus possesses important properties in-

cluding incentive compatibility (i.e., the users’ best strategy is to simply bid their true budgets

and job utilities) and monotonicity (i.e., users are motivated to increase their budgets in order

to receive better services). In addition, when the user is unclear about her utility function,

Abacus automatically learns this function based on statistics of her previous jobs. Extensive

experiments, running Hadoop on a private cluster and Amazon EC2, demonstrate the high

performance and other desirable properties of Abacus.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is a cost-effective paradigm for both the

cloud providers and the users. The providers benefit by effec-

tively multiplexing dynamic user demands of various com-

puting resources, e.g., CPU, storage, bandwidth, etc., through

virtualization techniques. Meanwhile, the users are liberated

from large capital outlays in hardware deployment and main-

tenance. Successful cloud models include Infrastructure as a

∗ Corresponding author. Tel.: +86 18925190471.

E-mail addresses: dingsword@gmail.com (J. Ding), zhenjie@adsc.com.sg

(Z. Zhang), tbma@comp.nus.edu.sg (R. T. B. Ma), yyang@qf.org.qa (Y. Yang).

Service (e.g., Amazon’s EC2), and data-intensive distributed

computing paradigm (e.g., Map-Reduce), both of which are

well adopted for a wide spectrum of web services and data

management tasks [13,15].

Cloud systems can be categorized into private clouds,

which are used exclusively by one organization, and pub-

lic ones, which rent out their computational capacities to

customers. For private clouds, one of the most important

objectives is efficiency, meaning that the overall utility de-

rived from the jobs executed with the limited cloud re-

sources. Although public clouds might put profitability be-

fore efficiency, both objectives are often aligned and achieved

by serving the most valued jobs under resource compe-

tition. In order to maximize efficiency, jobs should be

http://dx.doi.org/10.1016/j.comnet.2015.11.007

1389-1286/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comnet.2015.11.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.11.007&domain=pdf
mailto:dingsword@gmail.com
mailto:zhenjie@adsc.com.sg
mailto:tbma@comp.nus.edu.sg
mailto:yyang@qf.org.qa
http://dx.doi.org/10.1016/j.comnet.2015.11.007


232 J. Ding et al. / Computer Networks 94 (2016) 231–249

differentiated based on their characteristics, including the

utilities they generate and the distinct resources they require.

For instance, computation-intensive jobs may need power-

ful CPUs more than other resources, whereas bandwidth is

often the most important resource for delay-sensitive appli-

cations. Intuitively, resources should be allocated to jobs of

high importance, and to jobs that need them the most. Ex-

isting cloud systems generally do not provide adequate ca-

pability for such service differentiation. In particular, private

clouds mainly use simple resource allocation strategies, such

as first-in-first-out and fair-share. Public clouds essentially

differentiate users based on the amount of money they pay

for each type of resources. For instance, Amazon EC2 bun-

dles resources into virtual machines (VMs), and each type of

VM has its unique configuration and unit-time price. Based

on these prices and the status of their applications, the users

decide by themselves the type and number of VM-hours to

purchase. Moreover, such prices for computational resources

in public clouds often fluctuate continuously, forcing users to

monitor these prices and adjust their VM portfolios accord-

ingly, if they want to maximize overall utility within budget

limits.

While the above pricing scheme can be seen as a kind of

manual service differentiation, to our knowledge, currently

there is no solution for automatic service differentiation. Pro-

viding this functionality is challenging in several aspects.

First, only users (possibly) know the utilities and resource

usage patterns of their own jobs; hence, the cloud system

needs an effective way to obtain this information from the

users. Second, an incentive compatible mechanism is needed

to prevent any user from misreporting information so as to

increase its own utility, as this may hurt the performance

of other jobs as well the overall utility of the entire cloud.

Third, realizing an abstract service differentiation solution

on a real cloud system is non-trivial, as the implementation

must work seamlessly with the existing resource allocation

and scheduling modules.

Facing these challenges, we propose a novel cloud re-

source allocation framework called Abacus, which enables

service differentiation for clouds. Abacus acquires informa-

tion on users’ job characteristics through a novel auction

mechanism. Resources are then dynamically allocated ac-

cording to the auction results and the availability of each

type of resources. Abacus’ auction mechanism is incentive-

compatible, meaning that every user’s dominating strategy is

to simply bid its true job characteristics. This also implies that

the auction is stable, i.e., no user can benefit from unilateral

bid changes. These properties ensure that as long as a user’s

job characteristics remain the same, there is no need to mon-

itor the auction or to change bids. In this aspect, Abacus is

much easier to use compared to the price-based service dif-

ferentiation as in Amazon EC2. Further, the auction is mono-

tonic, which guarantees fairness in the sense that users pay-

ing more for a type of resource are always allocated higher

quantities of it. Finally, Abacus is efficient, which achieves

high overall system utility under the above constraints, as

confirmed by our experimental evaluations.

Abacus can be used in various cloud systems, including

public and privacy ones, and clouds running on different

platforms. To demonstrate the practical impact of Abacus, we

implement it on top of Hadoop, and evaluate its effectiveness

and efficiency using Map-Reduce workloads. To further im-

prove the usability of Abacus, especially for cloud system

users without clear knowledge on the utility model of their

own repeated jobs, we extend our standard auction mecha-

nism to enable users to submit bids with only budget infor-

mation. After running the jobs for a number of rounds un-

der default utility functions, the utility prediction component

is capable of recovering the true utility function, using re-

gression techniques. Experiments using a large-scale cluster

confirm that Abacus successfully achieves high overall utility,

high performance, and all the designed desirable properties.

The main contributions of the paper are listed below

• We present a new study on service differentiation tech-

niques for general cloud system. Our solution potentially

opens new business models for cloud systems in the fu-

ture, and enables ordinary users to exploit the benefits of

clouds.
• We propose Abacus, an auction based approach to cloud

system resource allocation and scheduling, with entic-

ing features such as incentive-compatibility, system stabil-

ity and system efficiency.
• We simplify the auction procedure by allowing the users

to skip the utility function when the user is unsure or un-

aware of the exact utility model of his own repeated jobs.
• We implement Abacus by modifying the scheduling algo-

rithm in Hadoop, and test it on a large-scale cloud plat-

form. Our experimental results verify the truthfulness of

our auction-based mechanism, system efficiency, as well

as the accuracy of our utility prediction algorithm.

A preliminary version of Abacus appears in [41]. The main

difference between [41] and the full version is that the for-

mer mainly focuses on the Abacus model and its theoretical

properties, whereas the latter also presents solutions and re-

sults that are crucial for applying Abacus in practice. These

include (i) a novel algorithm to handle jobs with Service

Level Objectives (SLOs), presented in Section 6, which en-

ables Abacus to support jobs running on cloud systems with

performance requirements, e.g. maximum response time, (ii)

a large-scale experimental evaluation of Abacus on a pub-

lic cloud (i.e., Amazon EC2) with real-world workloads, pre-

sented in Section 7.2, (iii) performance comparison between

Abacus and ARIA [37], a state-of-the-art solution for SLO-

based scheduling, also presented in Section 7.2. In addition,

the full version provides detailed proofs for our theoretical

results on the robustness and soundness of the proposed

algorithms.

In the following, Section 2 reviews related work. Section 3

provides problem definition and assumptions. Section 4 de-

tails the auction mechanism. Section 5 discusses automatic

optimization for users not knowing their own utility func-

tions. Section 6 extends Abacus to handle jobs with Service

Level Objective. Section 7 contains an extensive experimen-

tal evaluation. Finally, Section 8 concludes the paper.

2. Related work

2.1. Grid/Cloud resource allocation

Resource allocation [12,25] and scheduling [17,27] in

distributed systems have been extensively studied in the



Download English Version:

https://daneshyari.com/en/article/452808

Download Persian Version:

https://daneshyari.com/article/452808

Daneshyari.com

https://daneshyari.com/en/article/452808
https://daneshyari.com/article/452808
https://daneshyari.com

