
Secure peer sampling

Gian Paolo Jesi a,*, Alberto Montresor a, Maarten van Steen b

a Dip. di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
b Dept. of Computer Science, VU University, Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Available online 9 June 2010

Keywords:
P2P
Peer sampling
Overlay
Security
Gossip

a b s t r a c t

Gossiping has been identified as a useful building block for the development of large-scale,
decentralized collaborative systems. With gossiping, individual nodes periodically interact
with random partners, exchanging information about their local state; yet, they may glob-
ally provide several useful services, such as information diffusion, topology management,
monitoring, load-balancing, etc. One fundamental building block for developing gossip pro-
tocols is peer sampling, which provides nodes with the ability to sample the entire popula-
tion of nodes in order to randomly select a gossip partner. In existing implementations,
however, one fundamental aspect is neglected: security. Byzantine nodes may subvert
the peer sampling service and bias the random selection process, for example, by increas-
ing the probability that a fellow malicious node is selected instead of a random one. The
contribution of this paper is an extension to existing peer sampling protocols with a detec-
tion mechanism that identifies and blacklists nodes that are suspected of behaving mali-
ciously. An extensive experimental evaluation shows that our extension is efficient in
dealing with a large number of malicious nodes.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Would it make sense to implement large-scale collabo-
rative applications like Facebook or Twitter in a completely
decentralized way? From a social point of view, the answer
is definitely affirmative: the privacy concerns raised by a
company whose end-user agreement can be summarized
as ‘‘all your data belongs to us” are astonishing. From a
technological point of view, however, the answer is not
so simple: the enormous scale (hundreds of millions of
users) and dynamism of such systems pose enormous chal-
lenges to developers.

Gossip protocols have proven to be effective in dealing
with these challenges, going beyond the basic dissemina-
tion services for which they have been originally designed

[1] and implementing sophisticated services like topology
management, aggregation and monitoring, load-balancing,
semantic clustering, etc. [2–5].

A key requirement for gossip protocols is the ability to
randomly select gossip partners from the overall system.
The peer sampling service (PS) satisfies this requirement,
by providing nodes with continuously up-to-date samples
selected uniformly at random from the global node popu-
lation [6]. Informally, gossip-based PS services work as fol-
lows. Each node stores a collection of node descriptors,
called the (partial) view. Execution is divided in periodic
cycles during which each node p selects a node q from its
view and initiates a push–pull communication exchange
with it: p sends a subset of its own descriptors to q, plus
a fresh descriptor of itself, and q replies in the same way.
Node p updates its view based on the message received
from q, and symmetrically q does the same. Old descriptors
are progressively replaced by new ones; this mechanism
keeps views continuously up-to-date with respect to node
joins and leaves.

1389-1286/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2010.03.020

* Corresponding author. Address: Dip. di Ingegneria e Scienza
dell’Informazione, University of Trento, via Sommarive 14, 37128 Trento,
Italy.

E-mail addresses: jesi@disi.unitn.it (G.P. Jesi), montresor@disi.unitn.it
(A. Montresor), steen@cs.vu.nl (M. van Steen).

Computer Networks 54 (2010) 2086–2098

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

http://dx.doi.org/10.1016/j.comnet.2010.03.020
mailto:jesi@disi.unitn.it
mailto:montresor@disi.unitn.it
mailto:steen@cs.vu.nl
http://dx.doi.org/10.1016/j.comnet.2010.03.020
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Several implementations exist [7,8], that can be distin-
guished based on how they select the exchange partner
(e.g., completely at random or based on a timestamp);
how many and which descriptors are exchanged (e.g., all
of them or a small subset); how the update operation is
performed (e.g., by discarding old descriptors or by
swapping).

By interpreting descriptors as edges, the PS service can
also be seen as a mechanism to maintain a topology among
nodes. In all existing implementations, the resulting topol-
ogies present characteristics similar to those of random
graphs: small diameter and extreme robustness against
partitions. They are even self-repairing in the sense that
old descriptors tend to be discarded and information about
new nodes is naturally spread through gossip. These prop-
erties make them the right platform for gossip protocol
development.

An important issue of modern PS services is their poten-
tial exploitation by malicious nodes (or attackers for short).
The characteristics of the topology depend on the way
descriptors are exchanged; if some of the nodes do not be-
have according to the protocol, the sample process can be
biased toward a specific group of nodes instead of being ran-

dom; the resulting topology can fail to show the desired
properties.

The most important kind of attack that can be pursued
against gossip-based PS services is the hub attack, where
attackers attempt to gain a leading position in the topology
(they attempt to become hubs), to later exploit their lead to
cause havoc to the system, such as performing a DoS attack
that leaves the topology in a disconnected state.

For a concrete example of such attack, look at Fig. 1.
When the system runs correctly, a random topology is
formed, as illustrated in Fig. 1a.

Now assume that a small number f of colluding attack-
ers join the system. Note that f can be as small as the par-
tial view size, which is around 20–30 for most PS services.

Instead of running the regular protocol, the attackers
completely ignore the descriptors they receive and keep
sending the descriptors of the malicious group members.
The partial views in the entire system are progressively
polluted by the attackers’ descriptors, which keep being
generated by malicious nodes and propagated by correct
ones. As the percentage of malicious-node descriptors in
a partial view grows, the probability of contacting mali-
cious nodes grows proportionally, facilitating their job:

Fig. 1. Overlay topology before (a), during (b) and after (c–f) the attack. The healthy random graph (a) is mutated in a hub-based overlay (b). The graphs (c),
(d), (e) and (f) show what happens if the hubs leave the system (with f = {20,18,16,14} colluding attackers). Only 3 links per node are displayed for clarity.
Network size is 1000 nodes.

G.P. Jesi et al. / Computer Networks 54 (2010) 2086–2098 2087



Download English Version:

https://daneshyari.com/en/article/453109

Download Persian Version:

https://daneshyari.com/article/453109

Daneshyari.com

https://daneshyari.com/en/article/453109
https://daneshyari.com/article/453109
https://daneshyari.com

