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A B S T R A C T

This paper proposes the concept of a significant transport rate, in coastal environments that contains different
spatial and temporal scales and multiple interacting forces (e.g., waves, tides, wave-current, and wind density
currents) as well as, the complex physical processes of total-load sediment which is not easy to calculate for
practical needs due to restricted range of applicability. The present study develops a unified classical formula for
non-cohesive total-load sediment transport in marine coastal zones by using dimensional analysis and self-
similarity concepts where a set of independent variables considered. A dataset of total-load collected at both
field observation stations and from the laboratory flume conditions and the six well-known relevant formulas
were used to evaluate the predictive capability of the proposed formula. Since the results show that, the new
formula is in good agreement with both field and flume data sets measures, the authors are suggesting the use of
it for the sediment-carrying capacity predictions of total-load sediment transport in marine coastal zones.

1. Introduction

Sediment transport is important in the fields of coastal environ-
mental science, geomorphology, as well as hydraulic and coastal and
harbor engineering. In recent years, the significance of sediment
transport in the marine coastal environment and the coastal engineer-
ing studies has been widely recognized. The physical processes of the
coastal environment sediment transport are complex, multi-scale,
multi-dimensional processes having various effective parameters and
hence is considered to be one of the most difficult problems in this
field.

The total sediment transport pattern and the bed roughness are the
two distinct characteristics that have been examined by Einstein
(1950), Bagnold (1966), Engelund and Hansen (1967), Bijker (1971),
Graf (1971), Vanoni (1975), and Yalin (1977) for the rivers and Sleath
(1984), Nielsen (1992), Fredsøe and Deigaard (1992), Soulsby (1997);
van Rijn (2007) and Khorram and Ergil (2010a) for the coastal
regimes.

Over the last few decades, many theoretical or empirical and semi-
empirical formulas have been developed for the use in coastal studies
with reasonable accuracies to predict the sediment transport rates. The
commonly used methods that are often applied to compute the total-
load sediment transport in coastal waters were developed by Engelund
and Hansen (1967), Ergil (2000), Khorram (2008), Khorram and Ergil

(2011b) and van Rijn (1984a, 1984b).
Calculating the total-load sediment transport is a challenge, due to

the complexity of the hydro-dynamics and the variety of the governing
phenomena. Indeed, it is very difficult to estimate sediment fluxes on
beaches due to the combination of steady flows (currents) and
oscillatory flows (wave dispersion, wave-current, and water depth).
Moreover, the variations in mean water level (tide, set-up, and set-
down), breaking wave effects (turbulence and undertow), and topo-
graphic influence (mean slope and bed forms) should all be integrated
into the analysis as well. Generally the energies due to tides, waves,
winds, and currents are constantly present in the coastal zones. Various
methods, approaches, and even the dimensional and dimensionless
parameters used in the literature create confusion among the research-
ers while selecting the best representative equation, since each
equation has its own range of applicability and validity for a typically
unique data set (Khorram and Jafari, 2010c).

The aim of this study is to develop a unified classical formula to
estimate the non-cohesive total-load sediment transport amount in
marine coastal environments that characterizes the currents, combined
winds, waves and tides and the density-driven currents with better
predictions and wider ranges. It is obvious that, there is large number
of independent variables and parameters both in dimensional and
dimensionless forms that are influencing the total-load transport
mechanism. To determine the precision of the proposed formula, the
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wide range of measurements gathered from the relevant experimental
and the case study data sets, the dimensional analysis and the self-
similarity concept studies based on the number of independent
variables are all harmonized.

2. Complete and incomplete self-similarity

Sediment transport is a complicated natural phenomenon that has a
nonlinear character which can be described either the logarithmic or
the power law. Self-similar solutions always correspond to the idealized
problems in which the parameters of the problem having the dimen-
sions of the independent variables (the characteristic length or the
time) that are equal to zero or to infinity. In the non-idealized case, on
the other hand, the ratios of the independent variables to these
parameters are defined and hence forming the incomplete self-simi-
larity. On the basis of the values and the nature of the similarity
parameters, some hypotheses can be formulated in terms of either
complete or incomplete manner in order to either reduce the number of
independent variables or at least to retrieve some more practical
relations (Barenblatt, 1996; Wang et al., 2002; Khorram and Ergil,
2010b, 2011a). Under such circumstances, the incomplete self-simi-
larity argument has proven to be an efficient tool for computing total-
load flow rates.

3. Sediment transport equation

The definition of the total-load transport rate is (van Rijn, 2013):

q α q U hC= +tj bj b j (1)

so, the sediment balance equation is given as:
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where Ct is the depth-averaged total-load sediment concentration
obtained from C q U h= /( )t t c , and βt is the total-load correction factor
related based on βs, and ub as defined (Wu, 2007):
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where rs is the fraction of suspended load within the total load. βs, and βt
accounts the time lag between the flow and the sediment transport.
Since there is no analytical solution for βt , for practical purposes, it
must be calculated iteratively either by calculating it through inter-
polation from the pre-computed relevant tables or by setting constant
values for certain range of field conditions.

Integrating the 3-D sediment transport equation over the sus-
pended-load layer yields the governing advection diffusion equation for
suspended load in tensor notation as (Wu, 2007):
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where t is the time, xj is the horizontal coordinate with subscript j = 1
and 2,Uj is the depth-averaged current velocity in the jth direction, h is
the total water depth, C is the depth averaged suspended-load
concentration, βs is the suspended-load correction factor, νs is the
sediment diffusion coefficient, P and D are the entrainment and
deposition rates of sediment at the interface between bed and
suspended loads, respectively.

To the second term on the left-hand side of the Eq. (3) as suggested
by Wu (2004), the non-equilibrium relationship for the bed changes is
introduced:
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where qt and qt* are the measured (actual) and the equilibrium total-

load transport rates respectively and Lt is the adaptation length (the
characteristic distance) of the sediment motion used to adjust the non-
equilibrium relationship. So the equilibrium of the coastal region total-
load transport rate may be calculated from one of three widely used
relevant empirical sediment transport formula Lund-CIRP Carmenen
and Larson (2007), Watanabe (1987), and van Rijn (2007a, 2007b).

By ignoring the bed-slope effect on the bed-load transport direction
and setting α U U= /bj j c, the total-load transport equation can be written
as q U hC=tj j t. Inserting this expression and Eq. (4) into Eq. (2) leads:

⎡
⎣⎢

⎤
⎦⎥t

hC
β

U hC
x x

ν h r C
x

α ω C C∂
∂

( ) +
∂( )

∂
= ∂

∂
∂( )

∂
+ ( − )t

t

j t

j j
s

s t

j
t f t t*

(5)

where ωf is the sediment fall velocity, Ct* is the depth averaged total-
load concentration at the equilibrium state, and α U h L ω= /( )t c t f is the
total-load adaptation coefficient.

Eq. (6) is used in this study for sediment transport calculation. It is
closed by assumingr C C= */s t*, in which C* is the depth-averaged
suspended-load concentration at the equilibrium state.

The fraction rs is determined by the van Rijn sediment transport
capacity equations. The advantage of this total-load formulation is that
the suspended- and bed-load transport equations are combined into a
single equation, and there is only one empirical parameter α( orL )t t to
estimate.

4. Dimensional analysis for total-load flow rate prediction

The aim of this study is to obtain a unified classical formula for
predicting the non-cohesive total-load sediment transport rate in
marine coastal systems. To develop this formula, one of the most
common ways is the use of dimensional analysis and Buckingham’s Pi
Theorem. The proposed influential parameters are:
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where qt is the volumetric total-load sediment rate per unit width, and
Φt is the instantaneous dimensionless sediment transport rate
(Khorram and Ergil 2011a, 2011c). The grain diameter d50 in this
study is taken equal to the median grain size diameter, for practical
purposes. The terms dR /h s and Gs are embedded in the Shields’
parameter θcw m, , where w correspond to the wave direction and n
implies the normal direction. Taking θ f= (Re*), one can generate a
rather simple relationship:
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Therefore, it now becomes possible to apply the concept of
incomplete self-similarity method proposed by Barenblatt (1996) to
Eq. (4). Thus, the proposed equation can be expressed in the form of an
asymptotic power law by an approximate relation method in the form
of the intensity of the total-load rate since the function does not have a
non-zero limit for sufficient small or large values:

Φ = αθ mt cw,
β

(8)

where α and β are the coefficients that are mainly depending on the
granulometry.
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