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a b s t r a c t

Ocean color remote sensing has provided the scientific community with unprecedented global coverage

of chlorophyll a, an indicator of phytoplankton biomass. Together, satellite-derived chlorophyll a and

knowledge of Phytoplankton Functional Types (PFTs) will improve our limited understanding of marine

ecosystem responses to physiochemical climate drivers involved in carbon cycle dynamics and

linkages. Using cruise data from the Gulf of Maine and the Middle Atlantic Bight (N¼269 pairs of

HPLC and phytoplankton absorption samples), two modeling approaches were utilized to predict

phytoplankton absorption and pigments. Algorithm I predicts the chlorophyll-specific absorption

coefficient (an

ph (m2 mg chl a�1)) using inputs of temperature, light, and chlorophyll a. Modeled r2

values (400–700 nm) ranged from 0.79 to 0.99 when compared to in situ observations with �25% lower

r2 values in the UV region. Algorithm II-a utilizes matrix inversion analysis to predict aph(m�1,

400–700 nm) and r2 values ranged from 0.89 to 0.99. The prediction of phytoplankton pigments with

Algorithm II-b produced r2 values that ranged from 0.40 to 0.93. When used in combination, Algorithm

I, and Algorithm II-a are able to use satellite products of SST, PAR, and chlorophyll a (Algorithm I) to

predict pigment concentrations and ratios to describe the phytoplankton community. The results of this

study demonstrate that the spatial variation in modeled pigment ratios differ significantly from the

10-year SeaWiFS average chlorophyll a data set. Contiguous observations of chlorophyll a and

phytoplankton biodiversity will elucidate ecosystem responses with unprecedented complexity.

Published by Elsevier Ltd.

1. Introduction

Merging remote sensing variables such as ocean color chlorophyll
a and phytoplankton taxonomic composition will allow for a more
mechanistic understanding of past and future changes between
climate and ecosystem impact (Cermeño et al., 2008; Iglesias-
Rodriguez et al., 2008; Boyce et al., 2010). These goals support the
Intergovernmental Panel on Climate Change (IPCC) that recognizes
the feedback between climate and biodiversity (Fischlin et al., 2007).
Climate Data Records such as High Performance Liquid Chromato-
graphy pigment (HPLC) and Inherent Optical Property (IOP) data sets
exist, but they fall short of fully representing many ocean regions in
both space and time of year. Expanding the ability to remotely sense
key PFTs is a primary goal of this study. The drive for this information
is not only motivated by global climate change issues, but favors
novel approaches in the scientific community to formulate biogeo-
chemical models that incorporate ecosystem function and marine
productivity (Edwards, 2006; Striebel et al., 2009; Boyce et al., 2010).

There have been several reviews written on phytoplankton com-
munity structure, dynamics, and biogeochemistry as measured by
ocean color (Martin, 2004; Mueller et al., 2004; Miller et al., 2005;
Richardson and LeDrew, 2006 Longhurst, 2007; McClain, 2009;
Robinson, 2010; Moisan et al., 2012). Approaches for the remote
sensing detection of PFTs require defined optical signatures of
phytoplankton that are detectable by aircraft sensors or satellite
platforms and indirectly by the exploitation of relationships between
chlorophyll a concentration and functional types.

New technological advances and developments in scientific
knowledge have ushered in the development of several
approaches for detecting phytoplankton biomass and some func-
tional groups of phytoplankton including coccolithophores (Balch
et al., 1996) and Trichodesmium (Subramaniam et al., 2001,
Hu et al., 2010). More recently, algorithms have been developed
to distinguish additional phytoplankton groups such as diatoms
and size classes (Bouman et al., 2003, Sathyendranath et al.,
2004).

Phytoplankton taxa are generally characterized by specific pig-
ment complements called biomarkers and can be identified from
pigment inventories and optical properties derived from in situ

samples (Margalef, 1978; Brown and Podestá, 1997; Subramaniam
et al., 2001; Bricaud et al., 2004). These characteristics allow for the
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potential to separate out different sources of spectral variation using
remote sensing reflectance inversion techniques, phytoplankton bio-
mass, taxonomic composition, and possibly phytoplankton commu-
nity size distribution (Hoge et al., 1993, 1995, 2001, Lee and Carder,
2004, Aiken et al., 2007, Moisan et al., 2011). While this approach is
still far from classifying species composition in a classical manner, it
allows for ecological forecasting between major algal groups and is a
significant improvement over simply monitoring chlorophyll a bio-
mass (Westberry and Siegel, 2006, Li et al., 2006, Hirata et al., 2008).
The advantage of these approaches lies in the potential for remotely
monitoring of ocean color to detect changes in the phytoplankton
community that are linked to carbon sequestration and longer term
climate changes.

Historically, there has been an emphasis on characterizing the
development of remote sensing models to estimate the quantity of
various optically active constituents in the upper ocean surface. In
Case 1 waters, where optical properties are determined primarily by
phytoplankton and their related dissolved organic matter and detrital
products (Morel and Prieur, 1977) the spectral remote sensing
reflectance, RrsðlÞ, defined as the ratio of upward radiance LuðlÞ to
downward irradiance EdðlÞ (Mobley, 1994), has been shown by
Gordon and Morel (1983) to be directly related to inherent optical
properties of seawater such that

Rrs lð Þ ¼
LuðlÞ
EdðlÞ

� 0:54
X2

i ¼ 1

gi

bbðlÞ
bbðlÞþaðlÞ

� �i

sr�1
� �

, ð1Þ

where g1¼0.0949, g2¼0.0794, a(l) is the total absorption and bb(l) is
the total backscatter such that

aðlÞ ¼ awðlÞþaphðlÞþagðlÞþadðlÞ ð2Þ

and

bbðlÞ ¼ bbwðlÞþbbphðlÞþbbgðlÞþbbdðlÞ, ð3Þ

where the subscripts bw, bph, bg, and bd correspond to backscatter due
to seawater, phytoplankton, gelbstoff and detritus, respectively. Bulk
inherent optical properties (IOPs), by definition, include the sum of
the contributions from each of the optical components (i.e. water,
particles, and dissolved material). A full list of symbols used in the
paper can be found in Table 1

Phytoplankton absorption has been modeled using a wide
range of mathematical approaches (Bricaud et al., 2004; Siegel,
2005; Uitz et al., 2006; Moisan et al., 2011). Phytoplankton
backscatter values monotonically increase with decreasing wave-
length and are also thought to vary considerably with cell size,
taxonomic composition, and cellular carbon (Bricaud et al., 1996;
Stramski et al., 2000), although a recent study was unable to
detect any relationship with cell size (Whitmire et al., 2010).
Successful modeling of absorption has led to the development of
mathematical approaches to estimate photoprotective and photo-
synthetic pigments (Babin et al., 2003). Bricaud et al. (2004)
demonstrated the relative importance of both pigment packaging
effects and pigment composition on algal absorption, and noted
that the majority of the observed deviations in absorption were
due to variations in algal size and its impact on the pigment
package effect. Using inherent optical properties, Garver et al.
(1994) conducted an extensive review of the relationship between
pigmentation and taxonomic composition and underscored the
spectral limitations of present day ocean color remote sensing
reflectance. Other mathematical approaches for understanding
cellular absorption have separated the absorption spectrum

Table 1
Symbols used throughout the text.

l Wavelength (nm)

chl Chlorophyll (mg m�3)

PAR Photosynthetically available radiation (mmol quanta m-2 s-1)

aph (l) Absorption by phytoplankton (m�1)

an
ph (l) Chl-specific absorption of phytoplankton (m2 mg chl a�1)

ai (l) Pigment-specific absorption for the ith pigment (m2 mg ith pigment a�1)

a0ph (l) Reconstructed phytoplankton chlorophyll-specific absorption (m2 mg chl a�1)

âph (l) Normalized phytoplankton absorption (m�1)

pj Concentration of jth pigment (mg jth pigment m�3)

Rrs (l) Above-water remote sensing reflectance (sr�1)

Lu (l) Upward ocean radiance above sea surface (W m�2 sr�1 nm�1)

Ed (l) Downward solar irradiance from direct and diffuse solar radiation (W m�2 nm�1)

a (l) Total absorption (m�1)

aw (l) Seawater absorption (m�1)

aph (l) Phytoplankton absorption (m�1)

ag (l) Gelbstof absorption (m�1)

ad (l) Detritus absorption (m�1)
~an (l) Modeled pigment-specific absorption at l (m2 mg chl a�1)

bb (l) Backscatter (m�1)

bbw (l) Seawater backscatter (m�1)

bbph (l) Phytoplankton backscatter (m�1)

bbm (l) Mineral backscatter (m�1)

bbd (l) Detritus backscatter (m�1)

bT (l) Total backscatter (m�1)

c HPLC pigment measurements (mg pigment m�3)
~cj Inversion estimated concentration of pigment j (mg pigment m�3)

C0 (l) Linear fit absorption model intercept coefficient (m�1)

CE (l) Linear fit absorption model incident PAR coefficient (PAR�1 m�1)

CT (l) Linear fit absorption model temperature coefficient (T�1 m�1)

HPLC High-performance liquid chromatography (mg m�3)

R2 Coefficient of determination

r2 Pearson’s coefficient of correlation (non-dimensional)

ACE Aerosols-clouds-ecosystems

GEO-CAPE Geostationary coastal and air pollution events

HyspIRI Hyperspectral infrared imager
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