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a b s t r a c t

We automatically mapped the distribution of temperate continental shelf rocky reef habitats with a

high degree of confidence using colour, texture, rugosity and patchiness features extracted from images

in conjunction with machine-learning algorithms. This demonstrated the potential of novel automation

routines to expedite the complex and time-consuming process of seabed mapping. The random forests

ensemble classifier outperformed other tree-based algorithms and also offered some valuable built-in

model performance assessment tools. Habitat prediction using random forests performed most

accurately when all 26 image-derived predictors were included in the model. This produced an overall

habitat prediction accuracy of 84% (with a kappa statistic of 0.793) when compared to nine distinct

habitat classes assigned by a human annotator. Predictions for three habitat classes were all within the

95% confidence intervals, indicating close agreement between observed and predicted habitat classes.

Misclassified images were mostly unevenly, partially or insufficiently illuminated and came mostly

from rugged terrains and during the autonomous underwater vehicle’s obstacle avoidance manoeuvres.

The remaining misclassified images were wrongly or inconsistently labelled by the human annotator.

This study demonstrates the suitability of autonomous underwater vehicles to effectively sample

benthic habitats and the ability of automated data handling techniques to extract and reliably process

large volumes of seabed image data. Our methods for image feature extraction and classification are

repeatable, cost-effective and well suited to studies that require non-extractive and/or co-located

sampling, e.g. in marine reserves and for monitoring the recovery from physical impacts, e.g. from

bottom fishing activities. The methods are transferable to other continental shelf areas and to other

disciplines such as seabed geology.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Habitat mapping is an essential tool to aid managers in
assessing and managing the status of marine ecosystems.
Currently mapping of marine habitats is principally based on
two data sources, which are acoustic and optical. Both sources are
acquired remotely and sampling requires no physical contact
with the substrate as opposed to grab samples. Acoustic mapping
technologies include multi-beam echo sounder (MBES) and side
scan sonar (SSS). Optical mapping technologies include satellite
and aircraft remote sensing, platform-based video camera and
sediment profile camera (Rhoads and Germano, 1982). In shallow
water (o100 m), the density of individual MBES soundings is

generally several per square metre. In contrast, extractive sedi-
ment samples with a footprint usually o0.25 m2 are generally
placed several hundred metres apart. However, it is commonly
the combination of the two (broad and fine-scale) that culminates
in habitat maps. The latter discrete fine-scale samples are a
reliable and necessary means of ground-truthing remote mea-
surements. Visual techniques, such as digital photography and
video, are also considered to work at fine scales (�1 m) and
smaller scales. Non-extractive, image-yielding examples include
investigations of Arctic habitat-forming epibenthic megabenthos
(Piepenburg and Schmid, 1997) and organism–sediment relation-
ships (Rhoads and Germano, 1982). Autonomous Underwater
Vehicles (AUV) are increasingly used as carriers of high-resolution
imaging sensors due to their ability to manoeuvre very close to
potentially rugged terrain (Williams et al., 2010), thereby facil-
itating a constant image footprint. Images taken by an AUV
provide two advantages: (1) the continuous photographic record
yields intermediate-scale data, thereby bridging the gap between
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MBES mapping and point sampling and (2) the image itself is an
ideal candidate for automated data extraction.

Interrogation of digital imagery is necessary to extract quali-
tative and quantitative information. This task is usually carried
out by a trained annotator. Whilst image capture takes only a
fraction of a second, image annotation can take several minutes to
tens of minutes depending on the nature and detail of informa-
tion required. In fact, image interpretation and species identifica-
tion is extremely time consuming and potentially subjective.
Considering the various steps to produce a habitat map, annotat-
ing imagery, epitomises the proverbial bottleneck.

This study was conducted to expedite the lengthy and time-
consuming process of image annotation by means of automation.
Other efforts to automate the annotation process include the use
of machine-learning algorithms to detect cold-water corals and
sponges, as well as coverage enumeration after initial computer
system training (Purser et al., 2009). It should be noted though,
that this automation requires the computer system to be trained
with a training set of images labelled by a human expert. This way,
only a subset of the imagery is scored by a human expert and the
remainder is scored (classified) by the computer system, usually
with associated quantifiable error rate. Purser et al. (2009) report
45 min as the time taken to manually assess per cent coverage for
dominant species (sponges and cold-water corals), where each
image used 89 subsamples per image. After initial training, it took
the computer system 22 s to accomplish the same task. Purser
et al. (2009) used image texture features which numerically
represent optical and structural attributes of corals and sponges.

Whilst Purser et al. (2009) quantifies the percentage of seabed
covered by two organisms within an image, our study applies the
machine-learning algorithm random forests (Breiman, 2001) to
automate the process of assigning habitat classes to an entire
image of the seafloor. The novelty in our approach is the use
of geo-referenced stereo imagery from AUV mounted digital
cameras to generate a centimetre-scale bathymetric reconstruc-
tion in the form of a triangulated irregular network. This results in
a rugosity value for the overlapping footprint area of each image
pair. Usually multiple features are required to describe a habitat
comprehensively. We therefore used additional descriptors such
as image texture (Local Binary Patterns, LBP), image colour (hue–
saturation–values, HSV) and patchiness (Patch-Gap summaries,
PG) to increase the accuracy of semi-automated habitat predic-
tion. LBP and HSV are well-established methods in industrial
machine vision applications (Ojala et al., 2002). In order to
reliably employ these methods in an industrial setting, conditions
such as lighting are constant and machine tasks are simple i.e.
separating red and green apples. Applying the above-mentioned
methods to imagery collected in the field with variable lighting
regimes and complex machine tasks is a challenging proposition.
Our study explores this challenge by testing the applicability of
machine-learning algorithms to automate habitat classification in
a practical application, using AUV derived images acquired on
Tasmanian deep-water rocky reefs. Existing maps of Tasmania’s
inshore marine habitats are based on scientific echo sounder data
and manually annotated video footage for ground-truthing and
are restricted to depths o40 m (Barrett et al., 2001). With the
exception of a multibeam sonar mapping trial in this region
(Nichol et al., 2009) in which the AUV imagery was acquired as
a means of ground-truthing, no other studies in this area exist.
The study focused on highly complex rocky reef habitats below
40 m depth, which are difficult to efficiently sample using
extractive methods such as Agassiz trawl or grab sampler. Due
to the geology of Tasmania’s south–east coast, our study site
exemplifies deep-water rocky reef environments in this area.

The specific aim of this paper is to develop a novel analytical
method to automate the process of assigning habitat classes to

images of the seafloor, by automatically extracting colour, tex-
ture, rugosity and patchiness values from typical field acquired
images and therefore curtail image processing time. To assess the
success of this process, we evaluate the error rate of misclassify-
ing images and sources of error. Two new processing techniques
are developed to extract fine-scale bathymetry from stereo image
pairs to calculate a common complexity measure, rugosity and
extract fine-scale habitat distributions to calculate multivariate
measures of ‘patchiness’. We also discuss the relevance of this
repeatable and cost-effective method to process the large
volumes of image data needed to document the largely unknown
fine-scale variability in habitat distributions.

2. Methods

2.1. Study area

The study area is situated immediately to the east of O’Hara
Bluff, eastern Tasman Peninsula, Tasmania, Australia (Fig. 1). It
forms part of the ‘Peninsula Mapping Region’ (Barrett et al., 2001)
which has a dominantly easterly aspect, high vertical cliffs,
deepwater reefs (to 100 m depth) and medium to high wave
exposure. Geologically, the coastline is composed of dolerite,
sedimentary rock and, to a lesser extent, granite (Barrett et al.,
2001). This study uses data from a 4.6 km transect over the deep-
water rocky reef of O’Hara Bluff and its offshore extension and
transition zones between hard and soft substrate in 34–77 m
depths. The traverse took just over 3 h (vehicle speed¼0.4 m/s).

2.2. Data acquisition

The Autonomous Underwater Vehicle (AUV) Sirius operated by
the Australian Centre for Field Robotics at the University of
Sydney sampled benthic habitats using a pair of downward-
looking Pixelfly HiRes (1360�1024 pixels) digital cameras. Two
strobes synchronously illuminated the field of view. The AUV was
able to maintain a virtually constant altitude of 2 m above the
seafloor, which equates to an image footprint of 1.6�1.3 m2.
Image acquisition at a 1 s interval with a speed over ground of
�0.4 m/s provided an unbroken photographic record.

Sirius is a modified version of the SeaBED AUV (Singh et al.,
2004a), built by the Woods Hole Oceanographic Institution,
designed to be passively stable in pitch and roll. Yaw, forward
and backward movement is controlled by a pair of aft-facing
thrusters. Vertical (depth) movement of the positively buoyant
vehicle is accomplished by one vertical thruster. Geographical
vehicle positioning on the surface was accomplished using GPS.
Navigation underwater is achieved using a Doppler velocity log,
inertial measurement unit, ultra-short baseline acoustic position-
ing system, pressure sensor and a compass. To further reduce
positional error introduced by dead-reckoning and sensor inac-
curacies, the simultaneous localisation and mapping (SLAM)
technique was used to re-navigate the estimated vehicle trajec-
tories (Williams et al., 2008). Consequently, the intersecting
survey pattern (Fig. 1 bottom panel) was necessary to maintain
high spatial accuracy using SLAM.

2.3. Automated feature extraction

Colour, shape and texture features were used to characterise
benthic habitats in each image. Stereo-photogrammetry was used
to construct micro-topography for each stereo image pair to
provide a measure of terrain complexity or ‘rugosity’ where the
more complex surfaces had higher rugosity values. The three sets
of features used were first and second order statistics of
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