Continental Shelf Research 30 (2010) 680-691

journal homepage: www.elsevier.com/locate/csr

S coNTINENTAL

Contents lists available at ScienceDirect SHELF RESEARGH

Continental Shelf Research

Intercomparison between finite element and finite volume approaches to

model North Sea tides

Silvia MaRBmann *, Alexey Androsov, Sergey Danilov

Alfred Wegener Institute for Polar and Marine Research, Postfach 12-01-61, 27515 Bremerhaven, Germany

ARTICLE INFO

Article history:

Received 11 November 2008
Received in revised form

24 June 2009

Accepted 3 July 2009

Topical issue on “Tides in Marginal Seas”

(in memory of Professor Alexei V. Nekrasov).

The issue is published with support of the
North Pacific Marine Science

Organization (PICES).

Available online 15 July 2009

ABSTRACT

Unstructured meshes suggest a number of advantages in tide modeling by resolving coastlines and
providing refinements where it is required. We investigate the performance of several unstructured grid
methods (finite element and finite volume) and time stepping schemes with respect to their accuracy
and computational cost in simulating the M, tide in the North Sea. On a triangular mesh, we compare
solutions of one finite volume and two finite element approaches (P; — Py, PY® — P;) with the amplitude
and phase of observation data. All models show reasonable agreement and we explain the differences.
By comparing CPU times for one tidal cycle we get the computational efficiency of the temporal
discretization schemes (Euler semi-implicit, leapfrog explicit, Runge-Kutta and Adams-Bashforth).
Although numerical solvers involve more computational loads per time step, we give the preference to
the semi-implicit models, as the increased time step size reduces the total computational time
considerably.
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1. Introduction

Tidal circulation in the ocean is sensitive to the geometry and
bottom topography of the ocean basin. Unstructured grid tidal
models, which can readily represent the complex shoreline and
control the mesh density following the varying topography,
suggest a number of advantages compared to structured finite
difference (FD) models, especially in coastal regions. Over the last
several decades, a number of models working on unstructured
grids was proposed, as a rule, formulated for 2D shallow water
equations.

One of the most popular approaches is based on the finite
element (FE) method and uses the so-called generalized wave
continuity equation (GWCE). It works on general triangular grids
and represents the velocity and elevation as linear interpolations
on elements. The approach is successfully exploited in models
such as QUODDY (Lynch et al., 1996), ADCIRC (Westerink et al.,
1992) and MOG2D (Carrére and Lyard, 2003), with a long record of
applications ranging from local wind surge to global tide
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predictions. The other widely used approach utilizes a mixture
of finite volume (FV) and finite difference methods and can be
conceived of as a triangular analogue of C-grid discretization of
quadrilateral grids (Casulli and Walters, 2000). Although they are
widely used they are not free of shortcomings. The GWCE
approach does not exactly satisfy the continuity equation as it is
replaced by the GWCE to suppress elevation modes allowed by the
arrangement of variables (velocity and elevation are at nodes).
This leads to the loss of local mass conservation (see, e.g., Massey
and Blain, 2006). The C-grid approach requires orthogonal meshes
which makes mesh design less straightforward.

Recently, new promising methods were suggested as repre-
sented by PYC — P; discretization for the FE approach (Hanert
et al., 2004, 2005) and the discretization exploited by FVCOM
(Chen et al., 2003) for the FV approach. They do not share the
shortcomings of the methods mentioned above but maintain
similar numerical efficiency. An FE analogue to C-grid method,
utilizing RT, element, is gaining in popularity too. Its spurious
velocity modes are naturally filtered out by viscosity (Hanert
et al., 2003). Furthermore, even with mass matrix lumping, its
dispersive properties are well preserved (Le Roux et al., 2009). On
irregular meshes mass lumping has some implication on accuracy
or mesh characteristics (see Walters et al., 2009 for a brief review
and an intercomparison study) and should therefore be treated
with caution.
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Many other approaches have been discussed in the literature
and used to formulate models. They are less known to us and are
not mentioned here. In particular, on the side of FE method, there
is growing interest to discontinuous Galerkin methods which
provide higher numerical accuracy but also impose a larger
computational burden as the number of degrees of freedom per
element also increases.

Given the multitude of existing unstructured-grid models a
question emerges on their relative accuracy and numerical
efficiency. This paper suggests a step aimed at partly answering
this question by proposing an intercomparison study of several
recent methods with some modifications introduced to their time
stepping algorithm. As an object of numerical study we have
selected tides in the North Sea. The North Sea is a well-explored
domain (see, e.g., Defant, 1961; Huess, 2000; Klein et al., 1994;
Toro et al, 2005) characterized by complex morphometric
features and very high tidal activity. The tidal observations are
reliable and numerous which makes this area well suited for
model validation. On the other hand, it is of a limited size so that
overall computational burden remains modest.

For the intercomparison we use seven models exemplifying
finite volume (FV) and finite element (FE) classes. They are run
with identical settings on a North Sea and Baltic Sea triangular
mesh. The FV approach uses spatial discretization of FVCOM
(Chen et al., 2003) with fourth order Runge-Kutta (FVRK), third
order Adams-Bashforth (FVAB) and semi-implicit time stepping
(FVSI). Except for sharing discretization, our implementation has
no other links to FVCOM.

The FE class is represented by two methods. The first one
follows Hua and Thomasset (1984) and uses continuous P
elements for the elevation and non-conforming discontinuous
PY¢ elements for the velocity with a leapfrog explicit (NCLF),
Adam-Bashforth (NCAB) and Euler semi-implicit time stepping
(NCSI). In the second FE approach, the velocity and elevation are
both represented by P; functions (P1P1). Here we implemented
only the semi-implicit time stepping and spurious elevation
modes are suppressed by a particular form of the pressure
correction method employed.

Our selection misses FE models based on GWCE as they are
relatively well documented, and triangular C-grid model as they
require orthogonal meshes. The RTy case with consistent mass
matrix was not included too and presents an obvious choice for
subsequent work.

The absence of simple rules to find neighborhood information
on unstructured meshes requires using look-up tables which
increases the computational time. For the same number of
degrees of freedom the computational cost of FE and FV methods
is larger than that of methods formulated on structured meshes.
To fully exploit advantages of geometric flexibility suggested by
unstructured meshes the models still need efficient numerical
algorithms to be competitive to or outperforming the FD codes.
Within the unstructured-grid class of models, the comparison of
real computational cost and accuracy between FV and FE models
is of interest as it is commonly expected that FV schemes are more
efficient computationally but less accurate. In the literature, there
are only a few studies comparing FV and FE discretizations of the
shallow water equations (see, e.g., Lukacova-Medvid'ova and
Teschke, 2006; Walters et al., 2009), so we hope that our study
will be a helpful contribution.

The paper is organized as follows. In Section 2 the description of
models with their spatial and time discretization is presented. Section
3 contains results of modeling the dominant tidal wave M, in the
North Sea using these models. The results are compared among
themselves and against available observational data and the
computational efficiencies of algorithms selected for this study is
analyzed. In Section 4 conclusions of the work are formulated.

2. Model description
2.1. Shallow water equations

The equations under consideration are the 2D shallow water
equations. As known from literature (see, e.g., Pedlosky, 1987;
Anderson, 1995) they are derived from vertically integrating the
Reynolds-averaged Navier-Stokes equations under the hydrostatic
assumption and Boussinesq approximations. The momentum
equation is taken in non-conserving form for the FE codes (NCLF,
NCAB, NCSI, P1P1)

du+fkxu+gVn+@-Vyu=H'V.AHVW) —rH ljuju (1)

and in the conserving, flux form
o/U+ Hfk x u+gHVny + V. (Uu) = V- (AHVu) — rjuju 2)

for the FV codes (FVAB, FVRK and FVSI). Here u is the horizontal
velocity, U = Hu is the transport and H = 1 + Hy the total fluid
depth with Hy the unperturbed water depth and # the deviation
thereof. f is the Coriolis parameter, k the upward unit vector, r the
bottom friction coefficient, g the gravitational acceleration and A
the eddy viscosity coefficient. Noteworthy, the form of viscosity
operator is different in both cases which is done for numerical
convenience.
The continuity equation takes the form

an+vV-U=0 3)

for the FV codes or equivalently
oM+ V- +Hou=0 4

for the FE codes (NCLF, NCAB, NCSI, P1P1).
2.2. Boundary and initial conditions

The set of equations derived above is related to the type of
incompletely parabolic equations (see Gustafsson and Sundstrom,
1978). We denote 6Q the boundary split into the solid part, 6921,
and the open part, 6Q2,, where we have

Wnlog, =0, I'(W,1)lse, =¥, ®)

where u, is the velocity normal to 6Q;, I is the operator of the
boundary conditions and ¥ is the known vector-function
determined by the boundary regime as discussed in Oliger and
Sundstrom (1978). In practice, the necessary information on the
open boundary is unavailable, and the common choice is, in place
of the second condition (5), either to prescribe level oscillations
Nlae, or impose radiation boundary condition u,=u-n=
\/(g/Ho)n which would provide free passage of linear waves (in
the absence of Coriolis effect). Here n is the outer unit normal to
0€25. Accuracy of the reduced boundary-value formulation when
only the sea level is assigned at the open boundary regardless of
the boundary regime was considered by Androsov et al. (1995).

Due to a lack of initial data the initial conditions are just to set
u|,_o =0 and #x|,—o = 0. The transient part of the solution is
sufficiently damped as we start our tidal analysis after 25 cycles of
iteration.

2.3. Non-conforming FE models—NCLF, NCAB and NCSI

NCLF, NCAB and NCSI models use a P)¢ — P; FE discretization
(Hanert et al., 2005; Le Roux et al., 2005). The velocity is expanded
in non-conforming linear functions associated with edges, and the
elevation is expanded in linear functions associated with nodes.
The non-conforming element pair PY¢ — P; is little affected by
computational modes (Le Roux et al., 2005, 2007; Le Roux, 2005)
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