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a b s t r a c t

Beach evolution models are normally applied in a prognostic fashion, with parameters and boundary

conditions estimated from previous experience or other forecasts. Here, we use observations of beach

profiles to solve a beach profile evolution equation in an inverse manner to determine model

parameters and source function. The data used to demonstrate the method are from Christchurch Bay in

Dorset, UK. It was found that there is a significant contribution from diffusive processes to the

morphodynamic evolution of the beach profiles and that the development and disappearance of near-

shore coastal features such as upper beach berms and inter- and sub-tidal bars are well captured by the

source function in the governing equation.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Predicting morphological changes in coastal systems is a non-
trivial task due to the complexity of the underlying physical
processes involved and the sensitivity of the system behaviour to
natural variability. Interaction between system components and
dynamic forces behind its evolution spans a wide range of time
scales. The uncertainty of deterministic predictions of dynamic
forces beyond certain time scales and ambiguity of non-linear
interactions between the system and dynamic forces makes
medium to long-term morphodynamic predictions of coastal
systems extremely difficult.

Morphodynamic predictions of coastal systems are based on
two modelling approaches (De Vriend et al, 1993; De Vriend,
2003). The first approach is the use of process models based on
two or three dimensional hydrodynamic models combined with
sediment transport and morphodynamic modules (van Rijn et al.,
2003; Roelvink et al., 2001). These models are a valuable tool
for assessing local, short-term morphodynamic changes in a
beach, but have inherent limitations due to the lack of knowledge
of sediment transport processes and their linkage to hydrody-
namics. Uncertainties in the predictions are amplified by treating
sediment with a range of grain sizes. Further, numerical predic-
tions can exhibit great sensitivity to the initial conditions. This is
due not just to the accumulation of numerical rounding errors in

the computations required to solve the equations but also due to
nonlinearity of many coastal systems that may induce chaotic
behaviour. The second group of models have been termed
‘behaviour-oriented models’. These models are designed to over-
come the difficulties arising out of application of process based
modelling (Cowell et al., 1992, 1994; Dean, 1991; Stive and de
Vriend, 1995; Reeve and Fleming, 1997). The aim of behaviour-
oriented models is to reproduce the qualitative behaviour of beach
morphology using a simplified governing equation, parameteris-
ing the key processes. The governing equations are rarely derived
from first principles; rather, they are defined along the lines of
physical arguments. This and the parameterisation of processes
are both the strength and potential weakness of such methods.

Diffusion type formulations have been used in the past to
model long-term coastal and estuarine morphodynamic beha-
viour. It is important to note that this type of equations that have
been applied to coastal morphology have not derived rigorously
from basic process equations but are selected because their
solutions qualitatively exhibit the behaviour of the application
(Pelnard-Considere, 1956; Reeve and Spivack, 1994; Stive and De
Vriend, 1995; Reeve and Spivack, 2000; Hansen et al., 2003;
Karunarathna et al., 2008). The success of these models depends
on the identification of fundamental parameters as the space and
time varying coefficients of a simplified dynamic equation. In the
application of a diffusion type model to beach profile change,
collective changes to beach profile morphology including devel-
opment, disappearance and evolution of near-shore morphologi-
cal features and flattening and steepening of the profile, which are
driven by external forces are all included in a source function,
which is reproduced based on field evidence.
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In this paper we present a technique for the determination and
recovery of the diffusion coefficient and an unknown source
function in an advection-diffusion type governing equation for
long-term beach profile evolution. The diffusion coefficient is der-
ived as a problem of error minimisation and the source function is
recovered as the solution of an inverse problem, using measure-
ments of historic cross-shore beach profiles.

In Section 2 of the paper, the governing equation of the model
and the methodology used to derive the diffusion coefficient and
source function are presented and explained. The field site and the
historic data used to demonstrate the methodology are presented
in Section 3. Results are presented and discussed in Section 4, and
the paper finishes with conclusions in Section 5.

2. Formulation of the model

This section of the paper describes the simplified beach profile
evolution model and the method of recovery of the diffusion
coefficient and the source function.

Following the approach suggested by Stive and de Vriend
(1995) we take the governing equation for the evolution of beach
profiles, relative to a fixed reference level, as a form of advection-
diffusion equation:
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where h(x,t) is the cross-shore beach profile depth measured
relative to a fixed reference line, x is the cross-shore position,
K(x,t) and S(x,t) are space and time dependent diffusion coefficient
and an unknown external source function respectively. Fig. 1
shows the schematics of the model.

There are two unknowns to be resolved in the governing
equation, Eq. (1): the diffusion coefficient K(x,t) and the time and
space-varying source function S(x,t). Once these unknowns are
found (up to a fixed time t1 say), the governing equation can be
used to predict future evolution of beach profiles. Finding suitable
values for the diffusion coefficient and the source function is the
key element to the success of the model.

The spatial variation of the diffusion coefficient allows us to
represent the variation of morphological time scale with cross-
shore position. All information about the typical site climate,
sediment characteristics and short-term dynamics are assumed
to be summarised in K(x,t). All other natural inputs from climate
change and human induced inputs are included in the source
function S(x,t).

Next we perform a ‘Reynold’s expansion’, writing the profile
depth h(x,t), the diffusion coefficient K and the source function S

as the sum of their time averaged values and a time varying
component as follows:

hðx; tÞ ¼ hðxÞþh0ðx; tÞ ð2Þ

Kðx; tÞ ¼ K ðxÞþK 0ðx; tÞ ð3Þ

Sðx; tÞ ¼ SðxÞþS0ðx; tÞ ð4Þ

where an over-bar denotes the time averaged components and a
prime denotes the time varying residuals.

Then, Eq. (1) can be re-written as
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@½hðxÞþh0ðx; tÞ�

@t
¼

@

@x
K ðxÞ

@hðx; tÞ

@x

� �
þGðxÞþG0ðx; tÞ ð6Þ

where we have written
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We assume that the time average is taken over a sufficiently
long period that for any variable x, x̄0=0, qx̄/qtE0 and that to a
first approximation S̄E0.

Then,
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Taking the time average of Eq. (6) gives:
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In an analogy to the Reynolds’ stresses of turbulent fluid flow,
Ḡ(x) may be considered to be a turbulent morphodynamic stress.
As a first order approximation we take these stresses to be zero.

Eq. (9) is then solved for time averaged component of the
beach profile,
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The solution of which gives

K ðxÞ ¼
a

ð@hðxÞ=@xÞ
ð11Þ

where a is a constant of integration. (qh̄(x)/qx) is the gradient of
the mean cross-shore beach profile, which may be calculated from
the measurements of the beach profiles, and must not be equal to
zero anywhere in the range of x considered.

The physical interpretation of Eq. (11) is quite straightforward.
To maintain a steep beach the mean diffusion coefficient must be
small. Conversely, a large value of the diffusion coefficient
corresponds to a gently sloping beach. This accords with the
observation that gravel beaches are generally steep (with material
that has a relatively slow rate of movement) while fine sand
beaches, composed of highly mobile sediment, adopt a gentler
incline.

2.1. Determination of time averaged diffusion coefficient

In any application it is understood that a time history of beach
profile measurements is available. From these, it will be possible
to estimate the mean beach profile and hence it’s gradient. This
can be used in Eq. (11) as a known quantity. However, there are
two unknowns: K̄(x) and a. To solve Eq. (11) for K̄(x) a value for a
must be specified. Rather than select a value we adopt a procedure
similar to that used by Reeve & Fleming (1997). Let xi (i=1, 2,y, N)
denote the x-coordinates for which the average beach profile h̄(x)

x

0

x
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Fig. 1. Schematics of profile evolution model.
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