
Tracing conceptual models' evolution in data warehouses by using
the model driven architecture

Alejandro Maté ⁎, Juan Trujillo
Lucentia Research Group, Department of Software and Computing Systems, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 8 May 2013
Received in revised form 7 December 2013
Accepted 2 January 2014
Available online 11 January 2014

Keywords:
Data warehouses
Traceability
Conceptual models
Business intelligence
MDD
MDA
QVT

Developing a data warehouse is an ongoing task where new requirements are constantly being added. A widely
accepted approach for developing datawarehouses is the hybrid approach, where requirements and data sources
must be accommodated to a reconciliated data warehouse model. During this process, relationships between
conceptual elements specified by user requirements and those supplied by the data sources are lost, since no
traceability mechanisms are included. As a result, the designer wastes additional time and effort to update the
data warehouse whenever user requirements or data sources change. In this paper, we propose an approach to
preserve traceability at conceptual level for data warehouses. Our approach includes a set of traces and their
formalization, in order to relate themultidimensional elements specified by user requirementswith the concepts
extracted from data sources. Therefore, we can easily identify how changes should be incorporated into the data
warehouse, and derive it according to the new configuration. In order tominimize the effort required,we define a
set of general Query/View/Transformation rules to automate the derivation of traces along with data warehouse
elements. Finally, we describe a CASE tool that supports our approach and provide a detailed case study to show
the applicability of the proposal.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Developing a data warehouse (DW) is an ongoing task where new
requirements are constantly being added. Either as a result of the
dynamic environment, or due to new sources of information becoming
available (i.e. social media), decision makers constantly pose new
requirements and questions which need to be answered by analyzing
information. This information is integrated from several heterogeneous
sources. Then, it is structured in terms of facts and dimensions in the
DW [1]. Therefore, the development of the DW is a continuous and
complex process that must be carefully planned in order to meet user
needs and incorporate new requirements. To this aim, three different
development approaches have been proposed: bottom-up or supply-
driven, top-down or demand-driven, and hybrid [2,3].

The first two approaches ignore one source of information until the
end of the process, either requirements or data sources. This lack of
information leads to failure in some DW projects [2,4] since they either
(i) ignore user needs or (ii) assume that all the necessary data is
available, which is not always the case. On the other hand, the hybrid
approach makes use of both data sources and user requirements [3],
solving incompatibilities by accommodating both requirements and
data sources in a single conceptual model before implementing the
DW. Nevertheless, the current accommodation process is performed
much like a schema redesign process: successive modifications are

made to the schema, removing, renaming, and adding new elements ac-
cording to the designer's experience. In turn, the resulting DW schema
may neither match the data sources in structure nor in naming con-
ventions. As a result, existing traceability by name matching is lost.
Therefore, these correspondences must be identified again when
(i) validating and reviewing old requirements, (ii) posing new
requirements, or (iii) modifying data sources, all of which are error
prone tasks. Consequently, time and resources required are increased
while the quality of the final product is decreased [5].

In our previous works [6,3,7,8], we defined a hybrid DW develop-
ment approach in the context of the Model Driven Architecture
(MDA) framework [9]. The idiosyncrasy of DW development favors
our approach. In DW development, data sources act as both a source
of additional information as well as a limiting factor. In order to imple-
ment a requirement in the final DW, the required information must be
present in the data sources, either directly or by deriving it. Therefore,
we can clearly identify the desired structure of the DW (requirements),
and what information is supplied (data sources). The final step in this
process is to adequately relate this information in order to easily trace
and incorporate changes, instead of arbitrarily mixing the schema, and
making it difficult to perform further analysis tasks. Additionally, unlike
in software development, the reconciling processmay findelements not
present in the requirements model (due to an oversight) that provide
relevant information for decision makers [8]. Thus, it is interesting to
trace elements present in the data sources that do not have a require-
ment counterpart, but are present in the implementation of the DW,
since they help to elicitate overlooked user requirements.

Computer Standards & Interfaces 36 (2014) 831–843

⁎ Corresponding author. Tel.: +34 96 5909581x2737; fax: +34 96 5909326.
E-mail addresses: amate@dlsi.ua.es (A. Maté), jtrujillo@dlsi.ua.es (J. Trujillo).

0920-5489/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csi.2014.01.004

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.01.004&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.01.004
mailto:amate@dlsi.ua.es
mailto:jtrujillo@dlsi.ua.es
http://dx.doi.org/10.1016/j.csi.2014.01.004
http://www.sciencedirect.com/science/journal/09205489


The automatic derivation is done bymeans of model tomodel trans-
formations specified by Query/View/Transformation (QVT) [10] rules.
QVT is a language defined by the Object Management Group (OMG)
and proposed as a standard to create model to model transformations.
This language can be used to create both DW models as well as trace
models. However, due to our experience, the reconciliation task can
only be done at most semi-automatically, since there is not enough in-
formation available to fully automate it. The set of trace models
employed in our approach are shown in Fig. 1, and are further detailed
in Section 3.

In the short version of this paper [11]we developed a set of traces for
preserving the traceability of requirements at the conceptual level. Now,
in this extended version, we (i) provide a deeper review of the related
work describing details of the existing traceability approaches, (ii) pro-
vide a formal definition of our traces, (iii) generalize a set of QVT trans-
formations which allow us to derive the data warehouse from any trace
configuration specified, and (iv) provide an extended case study which
tests and shows better the application of the proposal.

The remainder of this paper is structured as follows. Section 2 pre-
sents related work about traceability and DWs. Section 3 introduces
the necessary trace semantics in order to include traceability at the con-
ceptual level in DWs. Section 4 presents a set of QVT rules for automatic
derivation of traces. Section 5 presents a case study to show the applica-
bility of our proposal. Finally, Section 6 outlines the conclusions and fur-
ther work to be done.

2. Related work

In this section, we will discuss existing traceability research, its ben-
efits and problems, and its current status in the DW field. Traditionally,
traceability has been focused on requirements. Either coming from the
traditional Requirements Engineering (RE) [12–15] or following a
Model Driven Development (MDD) approach [16–18], requirements
are traced to their lower abstraction level counterparts. Therefore,
traceability helps assess the impact of changes in requirements and in
rationale comprehension, by identifying which parts of the implemen-
tation belong to each requirement [19]. Additionally, it also improves
reusability and maintainability [13]. However, the lack of standardiza-
tion makes it difficult to apply traceability to projects, since even the
basic concepts differ from author to author [16,18]. Therefore, there is
a special interest on automating traces and providing a framework
with a set of basic concepts that can be extended.

In order to provide some degree of automation, recent works record
the relationships between elements by following two different ap-
proaches. First, generating traces from already existing information.
An advanced example is presented in [20], where the authors combine
topic modeling with prospective traceability as the user interacts with
the system. Second, making use of the logic behind automatic transfor-
mations. In this second approach, the transformation logic generates a
set of traces in addition to the new version of a model. Traces record
the relationships between elements in the source and target models,
and can be analyzed in by means of algorithms that take into account
their semantics. The former approach can be applied whenever a user
interacts with an artifact, minimizing the necessity of manually adding
traces. The latter can only be applied when models are automatically
transformed. However, whereas the first approach may generate some
incorrect traces, the second solution is based on transformation logic,
thus being less error prone.

Nevertheless, tracing the counterparts of a requirement at conceptual
level is not always straight-forward, even when following a MDD
approach and exploiting transformation logic. Elements are refined by
the developer before being transformed into the next model, altering
their characteristics or even their structure. This process is repeated
until the final version is obtained. Therefore, in order to maintain trace-
ability betweenmodels, the result of these operations must be traceable.

In DW development, the different steps can be clearly identified as
the DW schema evolves through several conceptual models. However,
the differences in the language used by decision makers, and the
language used by IT experts, make it difficult to reconcile data sources
and the target DW schema. This communication problem is analyzed
in [21], where the authors propose to tackle this problem by means of
ontologies to improve the communication between parties. A combination
of ontologies and traceability could help to produce a seamless integration
of new data sources and changes into the DW. Thus, in order to validate
requirements and support incremental changes, we require the tracing of
the representation of an element from one model to its counterpart in
the next model.

In order to tackle this problem, different works from the RE [12,13]
and the MDD communities [17,18] have included traceability in
software development processes. However, aside from our previous
contribution in [22], where we defined a trace metamodel for tracing
requirements to multidimensional structures, the traceability aspect
has been overlooked in DW development. Some works mention the
existence ofmappings between themodels involved inDWdevelopment

Fig. 1. Overview of the approach.

832 A. Maté, J. Trujillo / Computer Standards & Interfaces 36 (2014) 831–843



Download English Version:

https://daneshyari.com/en/article/453363

Download Persian Version:

https://daneshyari.com/article/453363

Daneshyari.com

https://daneshyari.com/en/article/453363
https://daneshyari.com/article/453363
https://daneshyari.com

