
Specification and simulation of queuing network models using
Domain-Specific Languages

Javier Troya ⁎, Antonio Vallecillo
Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga, Bulevar Louis Pasteur, 35, 29071 Málaga, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 3 November 2012
Accepted 2 January 2014
Available online 17 January 2014

Keywords:
Domain-Specific Languages
Queuing network models
PMIF

Queuing network models (QNMs) provide powerful notations and tools for modeling and analyzing the perfor-
mance of many different kinds of systems. Although several powerful tools currently exist for solving QNMs,
some of these tools define their own model representations, have been developed in platform-specific ways,
and are normally difficult to extend for coping with new system properties, probability distributions or system
behaviors. This paper shows how Domain Specific Languages (DSLs), when used in conjunction with Model-
driven engineering techniques, provide a high-level and very flexible approach for the specification and analysis
of QNMs.We build on top of an existingmetamodel for QNMs (PMIF) to define a DSL and its associated tools (ed-
itor and simulation engine), able to provide a high-level notation for the specification of different kinds of QNMs,
and easy to extend for dealing with other probability distributions or system properties, such as system
reliability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The specification and analysis of the non-functional properties of
software systems, such asQoS usage andmanagement constraints (per-
formance, reliability, etc.), are critical in most distributed application
domains, such as embedded systems, multimedia applications and
cloud computing. In fact, the development ofmethods and tools for per-
formance evaluation and modeling has been an active area of research
since the early days of software engineering.

Queuing network models (QNMs) provide powerful notations and
tools for modeling and analyzing the performance of many different
kinds of systems [1]. There are currently several tools for solving QNMs.
However, some of these tools define their own model representations,
have been developed in platform-specificways, and are normally difficult
to extend for copingwithnewsystemproperties, probability distributions
or system behaviors. A performance model interchange format, PMIF
citePMIF2 [2], was intended as a standard for defining and exchanging
QNMs between tools, although only a few tools support it.

Domain Specific Languages (DSLs) provide intuitive notations, closer
to the languages of the domain experts, in a compact and precise way,
and at the right level of abstraction. When used in conjunction with
Model-driven engineering (MDE) techniques [3], they become easy to
develop, and allow the resulting models to be manipulated, analyzed
and executed using standard tools.

This paper shows how a DSL for QNMs can be defined and built, pro-
viding a high-level and very flexible approach for the specification and

execution of QNMs at a high-level of abstraction, and enabling the de-
velopment of end-user tools in a flexible and cost-effective manner.
We also show how an existing de-facto standard for QNM representa-
tion and interchange (PMIF) can be integrated into the MDE domain,
being also extended and improved to cope with new required features
and system properties.

Following the usual MDE process, the DSL is defined in terms of its
abstract syntax, concrete syntax and semantics. The abstract syntax de-
fines the domain concepts that the language is able to represent, and
is defined by a metamodel. Given that the performance engineering
community has already defined a common metamodel for QNMs, we
have adopted PMIF as the base of our abstract syntax. The concrete syn-
tax defines the notation of the language, and it is defined by a mapping
from the concepts of the language into their textual or graphical repre-
sentation. In this case this is defined using the Eclipse Graphical Model-
ing Framework (GMF [4]). Finally, the semantics describes themeaning
of the models represented in the language, and in case of models of dy-
namic systems (such as ours) the semantics of amodel describes the ef-
fects of executing themodels. Here, the semantics is given by a semantic
bridge [5] fromQNMs to in-place behavioral rules, and supported by the
e-Motions toolkit [6,7].

The resulting DSL, called xQNM, has been integrated in a tool, pro-
vides a notation for the specification of different kinds of QNMs, is
easy to extend for dealingwith other probability distributions or system
properties—such as reliability—and is comparable to other existing
QNM tools.

The rest of the paper is organized as follows. After this introduction,
Section 2 presents the state of the art regarding QNMs, several tools and
PMIF. Then, Section 3 introduces the abstract syntax of xQNM, in terms

Computer Standards & Interfaces 36 (2014) 863–879

⁎ Corresponding author. Tel.: +34 95 213 2846; fax: +34 95 213 1397.
E-mail addresses: javiertc@lcc.uma.es (J. Troya), av@lcc.uma.es (A. Vallecillo).

0920-5489/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csi.2014.01.002

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.01.002&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.01.002
mailto:javiertc@lcc.uma.es
mailto:av@lcc.uma.es
http://dx.doi.org/10.1016/j.csi.2014.01.002
http://www.sciencedirect.com/science/journal/09205489


of an extension of PMIF 2 [2]. Section 4 presents the basic MDE concepts
and mechanisms that we have used in our proposal. Section 5 presents
an overviewof the components of the xQNM language, describing its se-
mantics in terms of a generic behavioral model for QNMs, its concrete
syntax, and the graphical editor we have built to create and input
queueing network models. Then, Section 6 explains how we deal with
QNMs behavioral simulations, it compares them with other tools and
presents the extensions needed to consider failures in servers. Finally,
Section 7 concludes and outlines some lines of future work.

2. State of the art

2.1. Queuing network models

In computer systems, many jobs share the system resources such as
CPU, disks, and other devices. Since generally only one job (or some of
them) can use the resource at any given time, all other jobs wanting
to use that resourcewait in queues. Systemswhere jobsmay be serviced
at one or more queues before leaving the system are modeled with
queuing networks. Queuing theory helps in determining the time that
jobs spend in various queues in the system [8]. These times can then
be combined to predict the system response time, which is basically
the total time that a job spends inside the system, and other non-
functional features such as throughput and idle-times.

There are twomain types of queuing networks: open and closed. The
former has external arrivals and departures. The jobs enter the system
at a source and depart at a sink (Fig. 1(a)). The number of jobs in the sys-
tem varies with time. Closed networks have no external arrivals or de-
partures: the jobs in the system keep circulating from one queue to
the next. The total number of jobs in the system is constant. It is possible
to view a closed system as a systemwhere the sink is connected back to
the source (Fig. 1(b)), and jobs leaving the system immediately re-enter
it. There are alsomixed networks, which behave as open for somework-
loads and closed for others. All jobs of a single class have the same ser-
vice demands and transition probabilities.

2.2. QNM tools

There are several commercial packages to queuing network model-
ing, like QNAP2 [9], the PDQ analyzer [10], SPE·ED [11], RESQME [12],
BEST/1 [13] and CSIM [14]. There are also many academic tools includ-
ing TANGRAM-II [15], SHARPE [16], JINQS [17,18], qnetworks [19] and
JMT [20] (for a very complete list, see Ref. [21]).

Table 1 presents several relevant features of some of the existing
packages and tools for solving QNMs (xQNM has also been included
for comparisonwith the rest). They are listed according to their approx-
imate chronological appearance. For each tool we list the evaluation
technique it uses (analytical methods, simulation or both), the specific
model representation needed, the probability distributions it accepts
and the types of QNMs it can analyze. Most of these tools were devel-
oped some years ago, and each of them specifies a queuing network
model in a different way and with a different language. To address the
problem of exchanging models among tools, a performance model in-
terchange format (PMIF) was proposed [2,24–26]. PMIF provides a

common representation for system performance model data that can
be used to exchange models among QNM modeling tools. However,
still most of the existing tools are not able to receive a PMIF model as
input. It is true that some tools tried to define common formats for
tool interoperability purposes, with a goal similar to PMIF. This is the
case of MOSEL-2 [27], a tool that provides means for specifying QNMs
and carrying out some performance measurements over them. The
tool is equippedwith a set ofmodel translators that allow the automatic
transformation of MOSEL-2 models to several third-party performance
evaluation tools.WEASEL [28] is an interesting client–server application
in which the user can specify a PMIF 2 (see Section 2.3) model graphi-
cally and then solve it by using the following external solution tools:
PDQ, SHARPE, MVACCKSW (MVA using different methods) and PEPSY.
Furthermore, it offers the option to translate the PMIF 2 model to the
specific notation of different tools, such as PDQ, SHARPE, PMVA, QNAP,
OPENQN, CLOSEDQN, MVAQFP, MQNA1, MQNA2 and PEPSY.

Only some of the tools mentioned provide a graphical interface for
the definition of QNMs (namely RESQME, SHARPE, SPE·ED, PEPSY,
JMT, QSIM and xQNM), in the rest the input models have to be intro-
duced textually or programmatically. And in most cases, all these for-
mats are proprietary and cannot be easily ported to other tools.

Analytical methods do not allow the exact evaluation of the perfor-
mance of QNMs with arbitrary probability distributions for arrival and
service times, only if they use Exponential and Uniform distributions.
This is why many packages also offer solutions based on simulation
for dealing with other distributions: TANGRAM-II, SPE·ED, QNAP2,
WinPEPSY-QNS and the JMT suite. Our tool belongs to this group.

Among the tools described in Table 1, there are tools written in
FORTRAN (QNAP2), C++ (TANGRAM-II and WinPEPSY-QNS), C
(PEPSY-QNS, PDQ Analyzer), GNU Octave (qnetworks) and Java
(JINQS, JMT). This is one aspect in which our tool significantly differs
from the rest, because it has been developed using MDE techniques,
and is defined in terms of DSLs and model transformations between
them, at a higher level of abstraction. This allows us the possibility to
modify or improve one of its parts and keep the rest untouched, and
provides us with a very organized and modular architecture. Conse-
quently, it makes the tool easier extensible for future versions and im-
proves its maintainability. jEQN [29] is a DSL for the specification and
implementation of distributed simulators for extended queueing net-
works. Although it also uses MDE techniques and provides a DSL for
specification and simulation, it builds on Java while our approach relies
on an existing DSL for the specification of real-time systems. Besides,
jEQN focuses on the development of distributed simulators from local
ones for extended QNMs while our tool focuses on the definition and
management of QNMs (definition, importation and exportation) as
well as on their simulation.

Most of the works about QNMs do not consider failures. This is, the
servers that compose the network can fail, being unable to process
jobs for some time and contributing to system delay. In this sense,
these works consider that the networks have an “ideal” behavior,
where nothing can go wrong. But this is far from reality, since in many
systems modeled with queuing networks many things can go wrong.
For example, in manufacturing systems, the machines that make up
the system can fail, or the actual servers that compose any kind of

(a) An Open Queuing Network (b) A Closed Queuing Network

Fig. 1. Examples of an open and a closed queuing networks.

864 J. Troya, A. Vallecillo / Computer Standards & Interfaces 36 (2014) 863–879



Download English Version:

https://daneshyari.com/en/article/453366

Download Persian Version:

https://daneshyari.com/article/453366

Daneshyari.com

https://daneshyari.com/en/article/453366
https://daneshyari.com/article/453366
https://daneshyari.com

