Computer Standards & Interfaces 36 (2014) 880-888

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

A regular expression matching engine with hybrid memories

@ CrossMark

Shuhui Chen **, Rongxing Lu >*

2 College of Computer Science, National University of Defense Technology, Changsha 410073, China
b School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

ARTICLE INFO ABSTRACT

Article history:

Received 22 February 2013

Received in revised form 2 December 2013
Accepted 11 December 2013

Available online 31 December 2013

A key technique of network security inspection is by using the regular expression matching to locate the specific
fingerprints of networking applications or attacks in the packet flows, and accordingly identify the underlying
applications or attacks. However, due to the surge of various networking applications and attacks in recent
years, even more fingerprints need to be investigated in this process, which leads to a high demand on a large
memory space for regular expression matching. In addition, with the frequent upgrading of the network links
nowadays, the network flow rate also increases dramatically. As a result, it demands the fast operation of regular
expression matching accordingly with the enhanced throughput for network inspection. However, due to the
limited space of the fast memory, the requirements on fast operations and large memory space are conflicting.
On addressing this challenge, in this paper, we propose to use hybrid memory for regular expression matching.
In specific, by investigating on the transition table state access probability through the Markov theory, it can be
observed that there exist a number of states which are much more frequently accessed than others. Therefore,
we devise a matching engine which is suitable for FPGA implementation with two-level memories, where the
first-level memory uses the on-chip memory of FPGA to cache the frequently accessed state transitions, and
the second-level memory, composed of slow and cheap DRAM, stores the whole state transitions. Furthermore,
the L7-filter's regular expression patterns have been applied to obtain the state access probability, and different

Keywords:

Deep Packet Inspection
Regular expression
Matching engine
Markov chain

quantities of memory assignment approaches have also been investigated to evaluate the throughput.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Deep Packet Inspection (DPI) is a key technique for Network Intrusion
Detection System (NIDS) and Network Forensic System (NES) [1,2]. In
these network security devices, the payload of packets is matched against
certain pre-defined patterns, e.g., fingerprints, to identify specific classes
of applications, viruses, attacks and criminal evidences, etc. One approach
in DPI is by using the string matching. However, it is not quite flexible and
powerful to describe complicated fingerprints. As a remedy to that,
regular expressions become a main approach rapidly in place of explicit
string patterns as the pattern matching language in packet scanning
applications. Due to its expressive power and flexibility for describing
useful patterns, regular expression has been widely used. For example,
in the Linux Application Protocol Classifier (L7-filter) [3], all protocol
identifiers are expressed as regular expressions. Similarly, the Snort [4]
intrusion detection system has evolved from no regular expressions in
its rule set in April 2003 to several thousand rules using regular expres-
sions currently. Another intrusion detection system, Bro [5], also adopts
regular expressions as its pattern language.

* Corresponding authors.
E-mail addresses: shchen@nudt.edu.cn (S. Chen), rxlu@ntu.edu.sg, rxlu.cn@gmail.com
(R. Lu).

0920-5489/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csi.2013.12.001

To conduct the match, regular expressions are compiled into Finite
State Machine (FSM), and then the packet payload is scanned with the
FSM. In the case of a light-weight network, with low flow rate and a
small number of patterns, pattern separated approach (in which every
regular expression is compiled into several FSMs, and the packet
payload is matched those FSMs one by one sequently) can satisfy the
throughput requirement. However, with the dramatic increase of band-
width, multi-Gbps links are nowadays widely applied in campus
networks, and the scale of the patterns of the typical DPI system is
over one hundred, as thus the traditional pattern separated approach
no longer meets the critical performance requirement. If a pattern inte-
grated FSM is utilized, the inflation of the states makes it impossible to
be filled into high speed memory like Static Random Access Memory
(SRAM) or on-chip memory of Field Programmable Gate Array (FPGA).

In regular expression matching, the storage capacity and the memory
speed become an irreconcilable conflict. In order to decrease the storage
requirement, previous researches (a detailed survey of the previously
reported literatures will be provided later) were exerted to reduce the
transition table memory. In this paper, we do not consider how to
deduce the memory of the state transition table, instead, we will take
hold of how to conjointly use high speed memory with small space
and slow speed memory with large space to make matching engine at
almost the throughput of the high speed memory.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2013.12.001&domain=pdf
http://dx.doi.org/10.1016/j.csi.2013.12.001
mailto:shchen@nudt.edu.cn
mailto:rxlu@ntu.edu.sg
mailto:rxlu.cn@gmail.com
http://dx.doi.org/10.1016/j.csi.2013.12.001
http://www.sciencedirect.com/science/journal/09205489

S. Chen, R. Lu / Computer Standards & Interfaces 36 (2014) 880-888 881

Every byte of packet payload needs at least one memory access
in DPI systems; as a result, the throughput constraint of the network
security devices is memory access time. Generally, the immanent
fluidness of network packets results in a very low hit ratio of the
cache. Since the number of the memory access is pre-defined and
cannot be changed subsequently, the potential to enhance system
performance is to improve the efficiency of each memory access.

Traditional network security devices like NIDS and NFS adopt high
performance CPU platforms such as x86 and MIPS, to improve the
system performance. These typical CPUs are developed for the improve-
ments on the calculation performance, so they are made as perfect or ef-
fective as possible on cache coherence, branch prediction, out-of-order
execution, multi-core parallelism, etc. The improvements on memory
access concentrate on how to increase the hit rate of the cache, but
the fluidness of network packets cannot exploit these advantages;
therefore, customizing hardware based approach such as FPGA is
introduced as its better pipelining and parallelism. In addition, FPGA
has specially designed on-chip memory for high bandwidth linkage
with logic units, which could accomplish high speed communication
between matching engine and memory. Nevertheless, the space require-
ment of the state transition table compiled from real-world patterns is
far more than the capacity of the FPGA's on-chip memory.

To address the contradiction between the performance of the
matching engine and the capacity of the memory, in this paper, we
present a new hybrid memory matching engine, which enables the
high throughput and a large scale of state transition table storage by
utilizing two levels of memories to accommodate the state transition
table. Specifically, the contributions of this paper are three-fold.

First, based on the transition table, a state transition possibility matrix
has been constructed, and the state accessing probability using Markov
chain with stable state vector is investigated. To the best of our
knowledge, it is the first work researching on formed states of
regular expressions.

Second, a two-level-memory hierarchy storage mechanism has been
introduced, in which the Markov theory is used to obtain the
frequently accessed states and their transition table entries are stored
in the first-level memory while the second-level memory is used to
hold the whole transition table entries.

Finally, real-world regular expression patterns are used to produce
the state transition table and state probability table, and a simulation
analysis is employed to show that our hybrid-memory architecture
can obtain the throughput almost as the first-level memory while
the memory cost is nearly the same as the second memory.

The remainder of this paper is organized as follows. The related work
is provided in Section 2, and the motivations on introduction of Hybrid
Regular Matching Engine are presented in Section 3. Then, Section 4 de-
picts the system architecture and framework. The process of obtaining
the stable vector is introduced in Section 5. The experiments and result
analysis are in Section 6. Finally, we conclude our work in Section 7.

2. Background and related work

Finite State Automata (FSM) is a natural formalism for regular
expressions. Although Deterministic Finite Automaton (DFA) and Non-
deterministic Finite Automaton (NFA) are two kinds of FSMs that can be
used to conduct DPI, the more preferred approach is DFA as it supports
non-backtracking search. In DFA-based systems, a number of researches
based on DFA systems compile m regular expressions into a composite
DFA, which provide guaranteed performance benefit over running m
individual DFAs. Specifically, a composite DFA reduces processing cost
from O(m) (O(1) for each automaton) to O(1), i.e., a single lookup
obtains the next state for any given character. However, the number of
states in the composite automaton grows to O(>_"™) in the theoretical
worst case.

Even though the approach compiling m regular expressions into a
single FSM is relatively fast, its O(1) scanning complexity still cannot
meet the current links' bandwidth requirement, as the aggregated Inter-
net traffic has been experiencing an annual bandwidth growth of 40%-
50% in recent years [6]. To break the performance bottleneck of regular
expression matching engine, a number of researches have been studied
to improve the overall throughput by achieving efficient content-
matching. Previously reported researches mainly focus on improving
the throughput of the rule matching algorithms, and/or employing
FPGA [7-9], GPU [10-13] or TCAM [14] for efficient content-matching.

Another kind of researches exerted to reduce the memory require-
ments can be clustered into two classes:

(1) The first FPGA-based solutions implement NFA [15-17].
Although NFAs are always smaller than DFAs, they need more
memory bandwidth as an NFA may be in several states simulta-
neously whereas a DFA is always only in one state. Thus each
byte that is processed might need to access the transition table
for 1QI times. Prior works have looked for different ways to find
good NFA representations of transition table that limits the
number of states that need to be processed simultaneously.
These approaches combine the matching engine with the state
transition table, which may lead to inconvenient pattern update.

(2) The second class of researches exerted to reduce the memory is
based on DFA. Although the approach with m regular expressions
compiled together into a DFA can gain O(1) computing complex-
ity, its storage cost is extremely higher than that of the separated
DFA. The number of states in a DFA scales poorly with the size
and number of wildcards in the regular expressions. For a naive
DFA with k states, its memory requirement is I3 1 x k x [Ink],
which is unsustainable as the k increases so fast with the increas-
ing of the regular expression number m and n (average length of
the expressions). In 2007, Becchi and Cadambi [18] proposed a
redundancy eliminating method. Its basic idea is merging “non-
equivalent” states in a DFA by introducing labels on their input
and output transitions. Its evaluation shows that it can drastically
reduce the DFA memory requirement, but its performance is
influenced as it needs to access several sub-tables.

In [19], the authors analyzed the size of DFAs for typical payload
scanning patterns, and developed a grouping scheme which can strate-
gically compile a set of regular expressions into several engines,
resulting in a remarkable improvement on regular expression matching
speed without much increase in memory usage.

Default transition and D?FA (Delayed Input DFA) were introduced
and employed in [20,21]. D?FA is a special FSM based on DFA but with
default transitions where each state can have at most one default
transition to one other state. The directed graph named as deferment
forest consisting of only default transitions in a D*FA must be acyclic.
D?FA representation reduces transitions by more than 95% but with a
speed penalty for long default transition paths in the D?FA matching.

In [14], the authors introduced a hardware-based RE matching
approach that uses Ternary Content Addressable Memory (TCAM) and
its associated Static Random Addressable Memory (SRAM) to hold
state transition table. They proposed three novel techniques: transition
sharing, table consolidation, and variable striding, to reduce TCAM
space and improve regular expression matching speed. The experiments
based on 8 real-world regular expression sets show that small TCAMs
can be used to store large DFAs and achieve potentially high regular
expression matching throughput.

We find the above-mentioned DFA based space compressing
methods except [14] sacrifice performance to some extent to occupy
less memory.

Our research is orthogonal to these researches as the second-level
memory is not so sensitive to the access performance, which signifies
that using these research achievements can reduce the second-level
memory space in our proposed approach.

Download English Version:

https://daneshyari.com/en/article/453367

Download Persian Version:

https://daneshyari.com/article/453367

Daneshyari.com

https://daneshyari.com/en/article/453367
https://daneshyari.com/article/453367
https://daneshyari.com

