
H: A component-based specification language for heterogeneous applications☆

J.A. Fernández-Madrigal a, L. Llopis b, A. Cruz-Martín a, C. Galindo a,⁎, J. González-Jiménez a

a System Engineering and Automation Dpt., University of Málaga, Spain
b Computer Science and Programming Languages Dpt., University of Málaga, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 11 July 2011
Received in revised form 5 March 2012
Accepted 26 March 2012
Available online 2 April 2012

Keywords:
Component-Based Software Engineering
Software architectures
Heterogeneous software applications

This paper presents H, a minimalistic specification language for designing heterogeneous software
applications, particularly in the realms of robotics and industria, which takes advantage of a Component-
Based Software Engineering (CBSE) approach. H copes with some of the most outstanding characteristics of
these systems, like diversity at different levels (hardware platforms, programming languages, programmer
skills), network distribution, real time and fault-tolerance. The H specification covers the life-cycle of any
heterogeneous application. Its development system offers to the designer and/or builder a set of tools for
specifying modules, generating code semiautomatically, debugging, maintenance, and a real time analysis of
the system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, a growing trend exists to use off-the-shelf
components in the development of industrial, robotics, and embed-
ded software applications [9], since that should lead to shorter time
to market and lower prices. In this class of applications, heteroge-
neity is not only unavoidable, but also a principal characteristic that
sets important requirements during development, as discussed
recently in [24]. Heterogeneity may appear at different levels: off-
the-shelf hardware components (microcontrollers, computers, ro-
bots, AGVs, sensors, actuators, etc.); communication networks that
add more diversity, especially in industry (different kinds of
networks and/or field buses); hardware components that must be
programmed, either in general-purpose languages (with or without
operating systems), or in specialized ones; etc. Moreover, heteroge-
neity goes beyond these issues. For example, the programming skills of
the people in charge of developing the application vary depending on
their areas of expertise, and also the components are subjected to
changes as technology evolves.

Component-Based Software Engineering (CBSE) is an emergent area
of research where a number of problems related to heterogeneity can
be properly addressed ([14,22,16]). Some of these problems are:

• The existence of different quality standards for different components.
• Defective integration of components, mainly due to the lack of
sufficiently mature integration frameworks.

• The challenge of obtaining a high degree of reusing without setting
excessive requirements on diverse components.

• Dealing with components which functionality evolves over time.
• Dynamic configuration of components.

There has been a number of development frameworks proposed
from the CBSE perspective (see Section 2 for a review), and also
standards for coping with isolated aspects of heterogeneous systems
design, but we have found that the following issues still need more
attention:

• Simplification/minimization of the specification of requirements on
components in order to facilitate both their validation and integration,
in spite of diversity. In this sense, for instance, current standards like
CORBA for communicating distributed heterogeneous software are far
from simple ([33]).

• Graceful degradation in the application dependability when compo-
nents satisfy only a subset of their individual requirements, a common
situation in heterogeneous applications.

• Integration of components with different degrees of reliability.
• Coping with the evolution of functionality, at different paces in
different components, with minimum impact in the design and
implementation of the application.

• Facilitating documentation, versioning, and repository management.
• Providing automatic or semi-automatic generation of code for
diverse execution platforms.

• Coverage of the main stages of software development life-cycle,
especially design, implementation, debugging, and maintenance.

Taking these issues into account, in this paper we present a new
development framework that fits in the area of CBSE, called BABEL,
aimed to cope with heterogeneity thoroughly, in the sense that it
covers some of the previously highlighted issues simultaneously: it is
a minimalistic approach to cope with highly heterogeneous

Computer Standards & Interfaces 35 (2013) 30–49

☆ This work has been partly supported by the Spanish Government under research
contracts TIN2011-23795, DPI2008-03527 and DPI2011-25483.
⁎ Corresponding author.

E-mail addresses: jafma@ctima.uma.es (J.A. Fernández-Madrigal), luisll@lcc.uma.es
(L. Llopis), anacm@ctima.uma.es (A. Cruz-Martín), cipriano@ctima.uma.es (C. Galindo),
jgonzalez@ctima.uma.es (J. González-Jiménez).

0920-5489/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.csi.2012.03.003

Contents lists available at SciVerse ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://dx.doi.org/10.1016/j.csi.2012.03.003
mailto:jafma@ctima.uma.es
mailto:luisll@lcc.uma.es
mailto:anacm@ctima.uma.es
mailto:cipriano@ctima.uma.es
mailto:jgonzalez@ctima.uma.es
http://dx.doi.org/10.1016/j.csi.2012.03.003
http://www.sciencedirect.com/science/journal/09205489


applications, identifies explicitly and exhaustively the non-portable
parts of a design, covers the most important stages of the software
lifecycle and encourages and facilitates the use of standards. For space
limitations, the paper is focused on one of its core elements: the H
specification language, which makes up the component model [25] of
the framework, although we also provide an overview of the whole
development system where H is included. The H language copes well
with:

• Heterogeneity in software and hardware components: the former
are specified by separating their portable (those that are not tied to
any other particular component) and non-portable parts, at two
levels of granularity as it will be explained further on. By dividing
in this way the specification, heterogeneity is conveniently and
explicitly identified from the beginning, enabling its efficient
management along the complete life-cycle.

• Distributed applications: a heterogeneous application based on
components can be distributed in a network. H allows the program-
mer to specify in the same framework both networked and not
networked applications. Implementations from this specification can
use a variety of software for the network: from direct peer-to-peer
communications to more sophisticated middleware (e.g.: [50,60]),
including standard libraries (e.g.: Berkeley TCP/IP sockets).

• All-scale design: H allows the programmer to specify from very
small components (embedded) to large-scale applications.

• Language independence: no constraints are imposed on the pieces
of code included into the specification of a software component in
H; they just must serve for specifying sequential operations
(concurrency is embedded into the H executionmodel, as explained
in the next sections).

• O.S. and hardware independence: a component is not tied to be
executed in any particular O.S. or specific hardware unless actually
needed.

• Real-time features: H includes facilities for real-time validation and
execution. These include a portable system of real-time priorities
(that can be mapped to a variety of existing O.S. real-time supports),
time measurement, and worst-case execution time (WCET) specifi-
cations. These features, as many others, can be restricted to the subset
of components that need them, enabling the graceful degradation of
the requirements commented before.

• Fault-tolerance features: H also allows the programmer to specify
fault-tolerance behaviors when necessary, based on active and
passive replication [30].

• Extensibility and reusability: a specification for a component in H
can be extended and reused in a clear and well-specified form. This
facilitates coping with technology evolution. Object oriented
inheritance is used in the language for these purposes.

• Validation enabled: the specification contains enough information
to apply some validation and verification techniques at early stages
in the design of the application, as we explain further on.

In addition to these features, the H specification language is
embedded into the aforementioned BABEL framework, where a
number of tools are available in order to cope with other stages of
the development life-cycle. These tools include: a visual case tool for
the design of components under H, an application for generating
implementations semi-automatically from these specifications, a
debugger for testing the execution of the application (including its
real-time performance), and a web site for maintenance of specifica-
tions and implementations.

We have found that the main advantages of the use of the H
language and the BABEL framework are drastically reduced develop-
ment effort (time, mostly) while guaranteeing from very stringent to
very relaxed requirements in different parts of the applications.
BABEL has been used mainly for robotic software development from
longer than a decade in its different versions ([26,13]), serving for
integrating heterogeneous and evolving hardware and software

components, and allowing a number of very different people
(students, engineers, researchers) to focus on practical and theoret-
ical robotic problems and not on software engineering issues, that
were satisfactorily solved by the framework. Currently, a well-proven
stable version that includes the previous version of H, called Aracne,
and some of the tools, is freely available for public download [13]. The
maintenance web site was described in detail elsewhere [26]
(currently is under a profound update and revision process).

This paper is structured as follows. Section 2 presents other works
relative to existing industrial (non-CBSE and CBSE) frameworks.
Section 3 offers a general outlook of the main features of H, illustrated
with excerpts from real robotic designs. In Section 4 we focus on the
time analysis that can be carried out on the specification of an
application. Section 5 presents a case study where a heterogeneous
domotic system can be developed using H. Finally, Section 6 sets the
conclusions of these work, and the future lines of development we
plan to follow.

2. Related work

Firstly, we will offer an outlook of some non-CBSE frameworks
that have been proposed in the particular fields of manufacturing
systems or robotics, which are of interest due to the especial
heterogeneity issues that emerge in these applications.

G++ [2] is an object oriented, pattern-based language that helps
to design large distributed software systems with concurrent control
requirements. The development process with G++ is an evolution-
ary one that maps the system analysis into a logical design, and then
maps that logical design into a physical one that is finally
implemented. The implementation needs frameworks or sets of
basic classes that support the low-level environment. There is a
commercial version of G++ [66] that has been used in the industry.
That version works on Java and C++ platforms, and it includes CASE
tools for analysis, design, prototyping and code generation, as well as
GUI tools for monitoring and control. Like G++, the H language and
tools of BABEL take into account most of the software life-cycle;
however, BABEL is not restricted to any particular programming
language, and it offers a downloadable free version.

Other relevant non-CBSE manufacturing/robotics frameworks are
the SEMATECH CIM [63], aimed to the integration of manufacturing
execution systems (MES), that concentrates on the shop-floor control
in semiconductor factories (some works, e.g., [37], have enlarged its
application domain both inside and outside that particular type
of manufacturers), and OSEFA, the Open Software Framework for
Manufacturing [58,59], which claims that creating the software
control of a manufacturing installation should be based on off-the-
shelf solutions, which would help to reduce the development effort
and cost.

From the component-based point of view, there are a number of
well-knowngeneral-purpose software component frameworks, like the
OMG's standard CORBA [50], COM [44], .NET [43], XPCOM [47] or EJBS
[23], which are suited to general application development. In the
following we discuss the most interesting approaches (the interested
reader can consult [54] for a deep study of fifteen component models):
DisCComp ([7,55]) provides a sound formal semantic component
model, however its specifications are close to the coding level,
separating it from the more abstract H proposal; Fractal ([19,18]) is
another platform independent component model that has been
implemented for different particular platforms, such as Julia [18],
AOKell [61] or FractNet [27], while the BABEL framework presented in
this paper provides a finer support for multiple platforms, as it will be
explained later on; Palladio ([36,39]) focuses on performance, including
analysis techniques, for example response time analysis, while in our
proposal the analysis can be performed without an implementation,
supporting early design time predictions; finally, KLAPER ([28,29]) is an

31J.A. Fernández-Madrigal et al. / Computer Standards & Interfaces 35 (2013) 30–49



Download English Version:

https://daneshyari.com/en/article/453377

Download Persian Version:

https://daneshyari.com/article/453377

Daneshyari.com

https://daneshyari.com/en/article/453377
https://daneshyari.com/article/453377
https://daneshyari.com

