
A component-oriented framework for experimental computer graphics

Dietrich Kammer a,⁎, Jan Wojdziak a,⁎⁎, Thomas Ebner b, Ingmar S. Franke a, Rainer Groh a

a Technische Universität Dresden, Faculty of Computer Science Nöthnitzer Str. 46, Dresden, Germany
b Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Einsteinufer 37, Berlin, Germany

a b s t r a c ta r t i c l e i n f o

Article history:
Received 24 November 2009
Accepted 27 May 2011
Available online 26 June 2011

Keywords:
C++
OSGi
Computer graphics
Software components

This paper provides a report about a framework that uses a variety of standards. Readers interested in 3D
computer graphics or component-oriented technology in C++ will find a report about the integration of
various standards by relying on yet another standard for component-oriented software engineering. The
highly successful Java standard called Open Services Gateway initiative (OSGi) is employed in a C++
implementation called Open Service Platform.
The application of this standard, which is primarily focused on network-centric software and embedded
systems, in the field of real-time 3D computer graphics, provides novel insights into the usability of the OSGi
standard.

© 2011 Published by Elsevier B.V.

1. Introduction

Our research group, working in the field of applied visualistics1 at
the Technische Universität Dresden, was challenged with the task of
integrating isolated theories and implementations in an extensible
software solution.

Much of our work is related to the adaption of techniques
previously employed by painters and artists. Traditional paintings
from the Renaissance establish a dialog between painter and observer.
This is achieved by the composition of a painting, driven by the
intentions and point of view of the painter. Computer graphics rely on
mathematical models which produce uniform pictures. It is our goal to
introduce the human factor into computer graphics by formalizing
some of the rules found in the history of paintings and pictures.

It can be proven that unlike the camera model in computer
graphics, Renaissance pictures often employ more than one perspec-
tive [1]. A wide angle of aperture, frequently found in Renaissance
paintings, normally produces distortions of objects located far away
from the focal point. In computer graphics or photography, the result
for a simple spherical object would be an elliptical shape. Painters
treat spherical objects differently than others and preserve their
appearance although located at the border of a painting. As a result,
their true shape can be identified more easily. Examples apart from
spheres are columns of buildings, people, and cupolas [2].

For the desired framework there were numerous requirements and
no existing solution could meet all of them. Especially the real-time
capabilities are not addressed by standard software in the domain of 3D
computer graphics, which is often centered around modelling aspects.
Examples are Autodesk's 3ds Max and Maya [3], both offering some
means of extending the existing functionality through plugins or scripts.
On the other hand, available engines for 3D computer games suffer from
restrictions due to their specialized nature.

The intended evaluations based on eye-tracking devices of the
theories proposed above, were impossible while using such tools. Eye-
trackers are being used in the field of applied cognition in psychology
to construct maps of attention [4]. They are used to assess the way
visual stimuli are being perceived. Eye-tracking solutions require
highly responsive systems, especially when used in connection with
real-time exploration of a three-dimensional scene [5].

This paper provides insights into the development process of the
presented framework. The focus lies on the identification and
integration of standard solutions for the 3D visualization component,
the graphical user interface and the extensibility mechanism.

There are already components available based on the framework.
Some of them deal with modifications of the rendering pipeline,
others offer tools for data visualization. To discuss these components
and their specific features is beyond the scope of this paper.

This report discusses related work and describes our framework in
more detail. The focal point is the identification and integration of
standard solutions for specific areas by using a standard for
component based software development.

2. Related work

In this section a brief survey of related work in the field of
component based software engineering is given. For the area of 3D

Computer Standards & Interfaces 34 (2012) 93–100

⁎ Corresponding author. Tel.: +49 351/463 37928; fax: +49 351/463 39261.
⁎⁎Corresponding author.

E-mail addresses: dietrich.kammer@mail.inf.tu-dresden.de (D. Kammer),
jan.wojdziak@inf.tu-dresden.de (J. Wojdziak).

1 The research field of applied visualistics investigates means of producing
visualizations of knowledge and data. The goal is to compete with conventional
representations that are based on numbers and text.

0920-5489/$ – see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.csi.2011.05.010

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r.com/ locate /cs i

http://dx.doi.org/10.1016/j.csi.2011.05.010
mailto:dietrich.kammer@mail.inf.tu-dresden.de
mailto:jan.wojdziak@inf.tu-dresden.de
http://dx.doi.org/10.1016/j.csi.2011.05.010
http://www.sciencedirect.com/science/journal/09205489


computer graphics an introduction to the scene graph concept is
provided.

2.1. Component based software engineering

Muchwork has been done in the field of component based software
engineering. With component-oriented approaches, the use of readily
available software is no longer mandatory. In most cases not all
requirements can be met by the programs mentioned above. Another
option is programming new software from scratch, which requires
much time and effort. Software components should work as indepen-
dent units of deployment, subject to composition by third parties [6].
The selection of suitable components for a desired software system is
thus possible.

For a component standard it is necessary to define three main
properties: a component model, a composition technique, and a
composition language [7]. The component model defines the nature of
a component. It explains the contents and structure as well as the
available interfaces. The composition technique explains the way
components are connected with each other. The composition
language is used to drive and parameterize this process.

Several standards for component systems have emerged that offer
different levels of flexibility and ease of use. Most flexible systems like
Toolbus [9] employ process algebra based techniques. Components
and their composition are defined in a descriptive way, challenging
the programmer more than traditional systems. For instance, the
Common Object Request Broker (CORBA) started out providing an
abstraction for distributed objects. In its latest release a component
model is being defined as well as a more powerful composition
language [10].

One of the most mature and usable component standards today is
the specification of the Open Services Gateway initiative [8]. It is
defined using the Java programming language and implements an
extension of the module system of Java. Components are called
bundles and are usually deployed in a compressed archive file
containing all binary files and resources, as well as a bundle
specification. This file contains information about the component
and declares dependencies on other bundles or resources.

You should be aware of the following standard classification
underlying this report. The OSGi specification uses standardized
interfaces to compose components. The composition language used in
the bundle specification uses a regular grammar according to the
Chomsky hierarchy of formal languages. Therefore, it is very easy to be
interpreted by the component runtime environment and allows for a
simple declaration of properties and dependencies.

The OSGi specification defines a number of layers (Fig. 1), namely
the execution environment, the module layer, the life-cycle layer, the
service layer, the bundle layer and the security layer. A number of

standard services are specified as well. The execution environment is
responsible for loading and executing bundles and considering
dependencies between them. The module layer defines how bundles
are being deployed and packages are shared between bundles. The
life-cycle layer enables the installing, starting, stopping, updating, and
uninstalling of bundles. For reference, the state diagram in Fig. 2 from
the OSGi specification is provided.

The service layer provides a programming model for sharing
functionality between bundles. This is essential for achieving
interoperability of components. The security layer adds some
constraints to the existing Java security model. Actual bundles
provided by third party developers are contained in the bundle
layer which builds on the previously mentioned layers.

Apart from the official specification, Wütherich et al. [11] recently
published the first book about the OSGi standard. It offers a more
practical overview, based on the successful application of the OSGi
framework within the Eclipse Community [12]. Based on their Equinox
framework, the integrated development environment that featured a
proprietary extensibiltymechanism for plugins, has been refactored to a
rich client platform. The highly dynamic features of the OSGi standard
allow the development of flexible systems, built on top of the eclipse
framework. Similarities between the framework described here and the
Eclipse approach are emphasized throughout the following sections.

2.2. Scene graphs

Graphs are used in many application domains to cope with the
complexity of data structures. Many algorithms and theories deal with
calculations of sub-groups, reachability of nodes and graph drawing.
They can be used both in technical fields like network analysis, as well
as social studies like the study of interactions within social groups. For
the field of real-time 3D computer graphics the organization of data in
form of a scene graph has proved most effective [13].

The earliest implementation is SGI's performer [14]. The scene
graph approach is traditionally used in the entertainment industry to
build 3D games with a specialized environment. More recently, scene
graphs are applied in general purpose environments for 3D
visualization [15].

The scene graph is responsible for a number of tasks that otherwise
the programmer would have to care about. It is an abstraction of the
actual underlying graphics hardware, simplifying the use of available

Fig. 1. Layers of the OSGi framework [8].

Installed

Resolved

Uninstalled

Starting

Active

Stopping

install

un
in

st
al

l

start

stop

un
in

st
al

l

re
so

lv
e

re
fr

es
h

up
da

te

update
refresh

Fig. 2. Life cycle of bundles from OSGi as a state diagram [8].

94 D. Kammer et al. / Computer Standards & Interfaces 34 (2012) 93–100

image of Fig.�2


Download English Version:

https://daneshyari.com/en/article/453405

Download Persian Version:

https://daneshyari.com/article/453405

Daneshyari.com

https://daneshyari.com/en/article/453405
https://daneshyari.com/article/453405
https://daneshyari.com

