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a b s t r a c t

We utilize a variety of available observations with a semivariogram technique to quantify the oceanic

variability around the Hawaiian Islands. The Hawaiian Islands have a significant impact on the North

Pacific circulation, and quantifying the characteristics of the variability is important for understanding

the eddy energy, as well as required for statistical techniques to work with the data, such as optimal

interpolation, data assimilation, etc. Both satellite sea surface height and temperature data are used to

determine horizontal scales of variability, while Argo profiles, ship-borne profiles, and autonomous

Seagliders provide estimates of the vertical scales. In the lee of the islands, satellite data reveal an

increase in horizontal variability attributed to enhanced eddy activity that persists for over 1000 km

westward; however, only within 400 km of the immediate lee the horizontal length scales are greatly

reduced. Further west, length scales increase significantly indicating a change in the generation

mechanism for eddy variability and where eddies merge and coalesce. The meridional length scale

gradient is found to be larger than previous results and more representative of the gradient of the first

baroclinic mode of the internal Rossby radius. Vertical length scales are shown to increase in the lee,

with vertical temperature variability doubled from the windward side.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ocean dynamics occur over a wide range of time and space
scales. Interannual and planetary dynamics occur at the largest
scales, while smaller motions include local tides, surface waves,
and ocean mixing. In general, the ocean is dominated by mesos-
cale fluctuations on time scales between 20 and 150 days and
spatial scales between 50 and 500 km (Wyrtki et al., 1976;
Danztler, 1977; Richman et al., 1977) that decrease poleward
from the tropics (Mercier and Colin de Verdiere, 1985; Lee and
Niiler, 1987). Applying autocorrelation to very advanced high-
resolution radiometer (AVHRR) infrared data, Krause et al. (1990)
estimated eddy scales in the North Atlantic that matched the
Rossby radius of the first baroclinic mode. Similarly, Stammer
(1997) and Chelton et al. (1998) used along-track TOPEX/Poseiden
altimeter data to estimate global eddy spatial scales finding that
eddy scales outside the tropics vary proportionally (though not
identically) to the internal Rossby radius of deformation.

The Hawaiian Islands (Fig. 1) are located in the southern
portion of the North Pacific Gyre in the presence of nearly
persistent northeastward trade winds. The island chain has a

significant effect on both ocean currents and winds (Xie et al.,
2001). The mountain peaks on the islands of Maui and Hawai’i
penetrate the trade wind inversion layer forcing the wind to flow
around the islands creating a large wake region of weakened flow
(Smith and Grubisic, 1993). An active and intense eddy field lies
in the wake region, driven primarily by the wind stress curl and
intrinsic instabilities in the ocean flow (Calil et al., 2008; Yoshida
et al., 2010). Fig. 1 shows a map of eddy kinetic energy (EKE) from
geostrophic currents (provided by AVISO) calculated from a
combination of altimetry missions from 2000 through 2008. The
effects of the islands on the ocean flow can be seen in the increase
in EKE found leeward of the island chain.

With such dynamical variation, the Hawaiian Islands pose a
difficult challenge to determine the dominant characteristics of
oceanic variability. Understanding this variability is important for
quantifying the circulation and it is also crucial for determining
the decorrelation scales that are applicable for optimal interpola-
tion, data assimilation, or state-estimation problems. In this
paper, we present a robust method to determine the spatial
variability that is applicable in both the horizontal and vertical.
We apply the semivariogram method (Journel and Huijbregts,
1978; Kitanidis, 1997; Banerjee et al., 2004) to multiple years of
satellite sea surface height (SSH) and temperature (SST) data
along with in situ temperature and salinity profiles. Spectral
analysis is also commonly used to compute spatial scales from
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oceanographic data, however it is not used because the method
has problems with missing data and spectral slopes can be
misinterpreted (Fasham, 1978). Geostatistical techniques, such
as the semivariogram or the closely related autocorrelation
method, proved less detailed information, but are more robust
for geophysical data (Chelton and Schlax, 1991). The semivario-
gram method was chosen over the autocorrelation method to
avoid using the ‘‘zerocrossing’’ of the autocorrelation function as a
length scale estimate, which does not always exist. From the
semivariogram we can also calculate the geophysical variability
captured by the observations and the unresolved variance that
provides an estimate of the measurement error. Because the eddy
field dominates the variability of the ocean, we utilize anomaly
data to limit the effect of large-scale mean dynamics in the
statistics and to focus on the mesoscale. In Section 2, we present
the semivariogram method and its application. In Sections 3
and 4, we present the results from the satellite and in situ data
before concluding.

2. Concepts and definitions

Combining spatially and temporally sparse data to determine
the variability characteristics (actual variability and the length
scale of decorrelation) is a difficult challenge. The semivariogram
function describes the covariance of sparsely distributed data as a
function of distance (Banerjee et al., 2004), and has been used
successfully for ocean dynamics (Seuront and Lagadeuc, 1997;
Doney et al., 2003; Milliff et al., 2003; Powell et al., 2008).

The semivariogram is defined as

gðhÞ ¼ 1
2E ðzðxþhÞ�zðxÞÞ2
h i

, ð1Þ

where E is the linear expectation, h is the lag distance, z(x)
represents the data value at a given location, x, and g(h) is defined
as the semivariogram function (the term variogram is used for
2g(h)). Thus, the semivariogram is the mean squared difference of
all values within h distance of x. Because values are scattered
spatially, no value of h is consistent, so a range of distances are
used to bin the data: h¼ho7dh. These lag bins provide enough
data such that the E operator is significant.

Data residuals are first computed for all available lag distances
within the data and binned. Binning sizes were chosen to be as
small as possible, while maintaining significant and consistent
sample numbers per bin. Once computed, the set g (Eq. (1)) is
considered the empirical semivariogram composed only of
observed data.

A statistical model is commonly fit to the computed empirical
semivariogram for a mathematical representation of the variance
(Journel and Huijbregts, 1978). This statistical model provides a
tool for describing how a measurement varies as it is perturbed

from its location. There are many mathematical models that may
fit the semivariogram (exponential, circular, etc.), and after
experimentation we found that a stationary Gaussian model
(Kitanidis, 1997) most consistently represented the empirical
semivariograms.

The Gaussian model:

GðhÞ ¼ Coþðs2�CoÞð1�expð�h2=L2ÞÞ ð2Þ

is fit to the empirical semivariogram, g(h), values using linear
least-squares to solve for the model parameters Co, s2, and L. The
‘‘nugget’’, Co, gives the zero-lagged or unresolved variance. The
upper limit of the variance, s2, is called the ‘‘sill’’ and represents
the value at which the data is no longer correlated. The lag
distance, h, between Co and s2 is estimated by L. Because the
Gaussian function decays asymptotically, this ‘‘range’’ is esti-
mated by (Kitanidis, 1997)

a� 7L=4: ð3Þ

To generate the characteristics of the variability the observa-
tional data is used with predetermined lag bins to compute the
empirical semivariogram. The modeled semivariogram is gener-
ated by fitting the Gaussian model (Eq. (2)) to the empirical
semivariogram. From this fit, we generate our estimates of the
unresolved variance (hereafter measurement error), Co, and the
maximum variance (hereafter variability), s2. The difference
between the sill and the nugget is attributed to the geophysical
variability captured by the observations. The length scale over
which the geophysical variability is significant is the range, a. As
the range is exceeded and the variance reaches s2, two observa-
tions are considered randomly correlated.

We now turn our attention to employ this semivariogram
method on a variety of data to determine the measurement error,
variability, and length scales around the Hawaiian Islands.

3. Horizontal variability and length scales

To analyze the horizontal variability and length scales around
the Hawaiian Islands we use four years of satellite sea surface
height and temperature data from 2004 through 2007. We chose
this period because of the availability of satellite altimetry data.
At least two satellites are required to map the ocean; however
with additional satellites the resolution of SSH measurements is
greatly enhanced (La Traon et al., 2001). During this time there
are four satellite altimeters available, until the failure of Topex/
Poseidon in 2006. While altimetry data is better suited to capture
eddy size and fluctuations, SST has also been shown to be an
indicator of eddy scale (Krause et al., 1990).

We analyze the along-track sea level anomaly product (SLA)
produced by Ssalto/Duacs and distributed by AVISO (with support
from CNES) from the altimeters onboard the TOPEX/Poseidon,

Fig. 1. The Hawaiian Islands, with leeward (solid white line) and windward (dot–dash white line) regions defined for semivariogram calculation. Contour levels show

mean EKE levels for 2000 through 2008 from the AVISO absolute geostrophic velocity product.
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