
Declarative specifications for the development of multi-agent systems

Moharram Challenger a,⁎, Marjan Mernik b, Geylani Kardas a, Tomaž Kosar b

a International Computer Institute, Ege University, Izmir, Turkey
b Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 1 October 2013
Received in revised form 26 August 2015
Accepted 29 August 2015
Available online 4 September 2015

Keywords:
Domain-specific language
Multi-agent system
Semantic Web
Formal semantics
Declarative specifications

The designing and implementation of a multi-agent system (MAS), where autonomous agents collaborate with
other agents for solving problems, constitute complex tasks that may become even harder when agents work
in new interactive environments such as the Semantic Web. In order to deal with the complexities of designing
and implementing a MAS, a domain-specific language (DSL) can be employed inside the MAS's development
cycle. In such a manner, a MAS can be completely specified by programs written in a DSL. Such programs are
declarative, expressive, and at the right abstraction level. In this way the complexity of MAS development is
then partially shifted to DSL development and the task herein can be much more feasible by using a proper
DSL development methodology and related tools. This paper presents and discusses our methodology for DSL
development based on declarative formal specifications that are easy to compose, and its usage during MAS
development. A practical case-study is also provided covering an example of a MAS's development for expert
finding systems. By using denotational semantics for precisely defining the language, we show that it is possible
to generate the language automatically. In addition, using attribute grammars makes it possible to havemodular
methodology within which evolutionary language development becomes easier.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A software agent is an encapsulated software system situatedwithin
a certain environment, and is capable of flexible autonomous action
within this environment in order to meet its design objectives [1].
These autonomous, reactive, and proactive agents can also behave in a
cooperative manner and collaborate with other agents for solving
common problems. In this way, these intelligent agents constitute
systems called multiagent systems (MASs).

The design and implementations of MASs are complex tasks when
considering their dynamicity and autonomous characteristics. Their
behaviour is more complex when taking into account the agent's inter-
action with new agent environments such as the Semantic Web [2,3].

The Semantic Web extends the current web in such a way that the
web pages' contents can be interpreted using ontologies [2] that help
machines to understand web-content. Software agents can fulfil the
interpretations in question by handling the semantic contents on behalf
of their human users by collecting web contents from diverse sources,
processing the information, and exchanging the results.

In addition, autonomous agents can evaluate semantic data and
collaborate with semantically-defined entities of the Semantic Web,
such as semantic web services (SWS), by using content languages [4].

SWSs can be simply defined as theweb serviceswith semantic interfaces
to be discovered and executed [5]. In order to support the semantic inter-
operabilities and automatic compositions of web services, the capabilities
ofweb services are defined in service ontologies that provide the required
semantic interfaces. Such interfaces of the SWSs can be discovered by
software agents and these agents may then interact with these services
to complete their tasks. The engagements and invocations of a semantic
web service are also performed according to the service's semantic proto-
col definitions. For instance, the dynamic composition of heterogeneous
services for the optimal selection of service providers can be achieved
by employing agents and ontologies, as proposed in [6].

However, agent interactions with semantic web services add further
complexities when designing and implementingMASs. Different meth-
odologies can be applied in order to deal with this complexity. One of
the possible alternatives is domain-specific languages (DSLs) [7–10]
that have notations and constructs tailored towards a particular applica-
tion domain (e.g. MAS and Semantic Web). In this way, DSLs raise the
abstraction level, expressiveness, and ease of use. In other words, when
using this methodology the users focus on the program model of the
solution instead of a platformcode for the solution, and they can automat-
ically generate code from themodel using DSL tools. As a result, the DSLs'
usersmostly need the knowledge from the problemdomain [11] but little
programming experience.

We are convinced that the use of a DSL can provide the required
abstraction and support amore fruitfulmethodology for the development
of MASs especially when working within a Semantic Web environment.
Within this context, prior to the work discussed here, we first provided

Computer Standards & Interfaces 43 (2016) 91–115

⁎ Corresponding author at: 208, International Computer Institute, EGE University,
Bornova, Izmir-Turkey. Tel.: +905419188836.

E-mail addresses: moharram.challenger@mail.ege.edu.tr, m.challenger@gmail.com
(M. Challenger), marjan.mernik@um.si (M. Mernik), geylani.kardas@ege.edu.tr
(G. Kardas), tomaz.kosar@um.si (T. Kosar).

http://dx.doi.org/10.1016/j.csi.2015.08.012
0920-5489/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2015.08.012&domain=pdf
http://dx.doi.org/10.1016/j.csi.2015.08.012
mailto:moharram.challenger@mail.ege.edu.tr
mailto:m.challenger@gmail.com
mailto:marjan.mernik@um.si
mailto:geylani.kardas@ege.edu.tr
mailto:tomaz.kosar@um.si
http://dx.doi.org/10.1016/j.csi.2015.08.012
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi


ametamodel defined in several viewpoints [12] forMASsworkingwithin
a Semantic Web environment. Then, based on this metamodel, we
developed a DSL called the Sematic web-Enabled Agent Language
(SEA_L) [13,14] including an interpreter mechanism for SEA_L which
is defined for enabling code generation regarding the implementation
of SEA_L agents (e.g. in JADEX platform [15]).

Although syntax definition based on a metamodel is an essential
part of a modelling language, an additional and required part is the
determination and implementation of DSL constraints that constitute
those semantics that cannot be defined solely by a metamodel or
syntax. In line with these constraints, the semantics of a DSL include
some rules that restrict the instance models created according to the
language.

The definition of the semantic rules was provided towards this end
in our previous study [16,17] focusing on Agent–Semantic Web Service
interaction. However, the represented semantic rules were not imple-
mented and applied to SEA_L language (although, it is one of the crucial
tasks during a DSL's development). In other words, the defined formal
semantic rules have not been applied to any translational/operational
semantics and have no effects on the quality of the generated code.
Such an application is important as the execution of the language is
described directly or by translating to another language in translational/
operational semantics.

Therefore, in this study, the specification of the static semantics
regarding the interactions between software agents and semantic web
services in SEA_L language is formally declared using denotational
semantics [18] which paves the way for the implementation of these
specifications using attribute grammars [19,20]. Static semantics is
used to control some constraints during system modelling in the DSL.
On the other hand, denotational semantics interpret the phrases of a
language as mathematical denotations and conceptual meanings that
can be thought of abstractly.

Our main motivation is that declarative specifications can present
the meanings of both associations and constraints for the language in
a formalway. The formal representation of the semantics helps to provide
an unambiguous definition and precise meaning of a program. It also
helps to have the possibility for more accurate code generation by the
language-based tools [21], when they are implemented in the DSL
(which is lacking in the related work). A successful system verification
and validation can also be achieved with a proper formal semantics
definition.

In order to implement the defined declarative semantics of SEA_L, we
have employed the LISA tool [22] which is based on attribute grammars.
As can be noticed in further sections of this paper, implementation
using LISA enables the separation of concerns between the syntax and
the semantics. Moreover, it offers tools for syntax and semantics
evaluation separately.

Hence, the main contributions of this paper are listed as follows:

• a new DSL-based methodology for the development of MAS with
Semantic Web, where DSLs are formally specified with formalism
that enables incremental specifications; and

• the implementation of the static semantics of SEA_L MAS development
language and integrating them within the operational semantics of
SEA_L in the form of declarative specifications using attribute
grammars; this leads to productivity and advanced semantic controls
in our DSL, and modularity and extendibility for the new language.

The remainder of the paper is organised as follows: Section 2 discusses
the related work. The applied approach is elaborated in Section 3. The
proposed methodology is discussed in Section 4 by especially taking
into consideration the Agent–SWS interaction viewpoint of the system.
In Section 5, use of the language and its semantics is presented using a
case-study. Section 6 covers the evaluation and discussion for this study.
Finally, the paper is concluded in Section 7.

2. Related work

The design and implementation of MAS working on the Semantic
Web keep their emphasis since the first introduction of this new genera-
tion web in [2]. Berners-Lee et al. [2] took software agents as the central
point of distributed content collection, knowledge formalisation, process-
ing and interpretation of data, which are all required for the realisation of
such a web environment. Hence MAS composed of many autonomous
agents now became one of the major components of the Semantic Web.
More specifically, the integration of agents and the knowledge ontologies
steers the use of web services [23] and enables the automatic discovery
and execution of services by the agents within the Semantic Web
environment. Many researchers have investigated how the agents can
participate in service execution inside the Semantic Web environment
and have provided noteworthy methodologies and/or protocols for
collaboration between agents and other Semantic Web entities, e.g.
semantic web services. For instance, Paolucci et al. [24], Sycara et al. [5]
and Li and Horrocks [25] proposed various capability representation
mechanisms for semantic web services and discussed how they can be
discovered and executed by agents. Agents infer about the suitability of
the advertised semantic web services for the required action according
to those defined service representations and decide on executing the
more appropriate service. The studies in [26] and [27] described agent
environments which use OWL-S ontologies to advertise descriptions of
agent services to transport them using communication messages. Those
descriptions provided for the use of agent services as if they were
semantic web services. OWL-S [28] is an ontology built on top of Web
Ontology Language (OWL) for describing Semantic Web Services and
enables users and software agents to automatically discover, invoke,
compose, and monitor Web resources offering services, under specified
constraints. In addition, OWL [29] is a family of knowledge representation
languages for authoring ontologies which are a formal way of describing
taxonomies and classification networks.

A set of architectural andprotocol abstractions that serves as a founda-
tion for Agent–web service interactions on the Semantic Web was intro-
duced in [30]. This initiative architecture addressed the requirements of
dynamic service discovery, service engagement, service process enact-
ment and management, community support and quality of service for
the Semantic Web. The architecture is based on the MAS infrastructure
because the specified requirements can be accomplished with asyn-
chronous interactions and using goal-oriented software agents. Two
implementations of this conceptual architecture were provided in
[31] and [32] which mainly considered the service matchmaking,
service discovery and service execution functionalities of software
agents. Preparation of existing web services into the Semantic Web
environment or migrating them via software agents is also possible
by following approaches such as given in [33] and [31].

Similar to [5] and [25], Talantikite et al. [34] provided an input-output
similaritymeasure for OWL-S ontologies for determining the best seman-
tic services and compose them for meeting client requests. Instead of
semantic web service profiles, the use of OWL-S process models is pro-
posed during the service discovery in [35]. Hence, it is aimed at finding
and matching more relevant services with the proposed algorithm.
Kumar [36] discussed multi-attribute negotiation between the agents
working on the Semantic Web and the benefits of such negotiation on
both the selecting and composing of semantic web services. Our study
contributes to the above-mentionedMAS and the SemanticWeb research
by providing a DSL which can be used to formally define and implement
the interaction between software agents and semantic web services. MAS
developers can use the specifications given in this paper to realise con-
crete implementations of collaboration protocols and abstract Semantic
Web service architectures (e.g. [30] and [36]) discussed above; such
that agents may interpret and reason with semantic descriptions during
the deployment of semantic web services.

On the other hand, Agent-oriented Software Engineering (AOSE)
is one of the major areas of agent research intersecting Software

92 M. Challenger et al. / Computer Standards & Interfaces 43 (2016) 91–115



Download English Version:

https://daneshyari.com/en/article/453486

Download Persian Version:

https://daneshyari.com/article/453486

Daneshyari.com

https://daneshyari.com/en/article/453486
https://daneshyari.com/article/453486
https://daneshyari.com

