Deep-Sea Research I 54 (2007) 1549-1570 DEEP-SEA RESEARCH PART I www.elsevier.com/locate/dsri # Comparing POC export from ²³⁴Th/²³⁸U and ²¹⁰Po/²¹⁰Pb disequilibria with estimates from sediment traps in the northwest Mediterranean G. Stewart^{a,*,1}, J.K. Cochran^a, J.C. Miquel^b, P. Masqué^c, J. Szlosek^a, A.M. Rodriguez y Baena^{b,d,2}, S.W. Fowler^b, B. Gasser^b, D.J. Hirschberg^a ^aMarine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794, USA ^bMarine Environmental Laboratories, International Atomic Energy Agency, MC 98000, Monaco ^cDepartament de Física, Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain ^dDip. Te. Ris., University of Genova, I-16132 Genova, Italy Received 4 August 2006; received in revised form 30 May 2007; accepted 7 June 2007 Available online 30 June 2007 #### **Abstract** We compare POC fluxes estimated using 234 Th/ 238 U and 210 Po/ 210 Pb disequilibria at the DYFAMED site, northwestern Mediterranean Sea. We also compare the POC fluxes estimated from these two isotope pairs with fluxes below the euphotic zone measured in moored sediment traps. The POC flux at 200 m estimated from 234 Th and 210 Po deficits and the POC/ 210 Po or POC/ 234 Th on >70 µm filterable particles measured through three seasons (early spring, late spring, summer) ranged from 3.8 to 17.5 mmol C/m²/d based on 234 Th/ 238 U and from 4.4 to 7.0 mmol C/m²/d based on 210 Po/ 210 Pb disequilibrium. In comparison, sediment trap fluxes of POC at approximately 200 m ranged from 0.2 to 6.0 mmol C/m²/d over the same interval. Values of POC/ 210 Po and POC/ 234 Th ratios in sediment trap material collected in time series or separated according to settling velocity (SV) were generally lower than values in the >70 µm filterable particles at the same depth. The variation in POC/ 210 Po and POC/ 234 Th in material separated according to SV showed no clear relationship with SV and was controlled more by particle composition and degree of degradation. Both 234 Th and 210 Po showed sustained deficits in late spring and summer, despite low fluxes recorded in the trap. Lateral processes (transport of particles along isopycnals or intrusion of shelf waters to the site) and violations of temporal assumptions (steady-state vs. non-steady-state) may be responsible for this disparity. Based on the results of this study, we conclude that 210 Po/ 210 Pb disequilibrium is as valid as 234 Th/ 238 U as a proxy for estimating POC flux in the ocean. Keywords: Vertical flux; Thorium; Polonium; Lead; Sediment traps; Mediterranean; DYFAMED E-mail address: gstewart@qc.cuny.edu (G. Stewart). #### 1. Introduction The export of POC from the surface ocean to depth is an important parameter in global carbon models (e.g., Kwon and Schnoor, 1994). This flux of material plays a key role in sequestering carbon ^{*}Corresponding author. Tel.: +17189973104; fax: +17189973299. ¹Present address: Earth and Environmental Sciences, Queens College, New York, NY 11367 USA. ²Present address: International Commission for the Scientific Exploration of the Mediterranean Sea (CIESM), Principality of Monaco, Monaco. from the atmosphere into the deep ocean and marine sediments. Particle-reactive, short-lived natural radionuclides can be used to trace POC flux (e.g., Buesseler et al., 1992a,b; Buesseler, 1998; Cochran et al., 2000; Cochran and Masqué, 2003). Commonly, the disequilibrium of 234 Th ($t_{1/2} = 24 \,\mathrm{d}$) with respect to its radioactive parent 238 U ($t_{1/2} = 4.5 \times 10^9 \,\mathrm{y}$) in the surface ocean has been used to estimate POC fluxes (see Cochran and Masqué, 2003 for a review). The calculation of POC flux from 234 Th deficits is done by multiplying the integrated deficit above a given depth horizon (e.g., the base of the euphotic zone) by the POC/ 234 Th ratio (hereafter POC/Th) on particles settling through that horizon (Buesseler et al., 2006). Only a few studies have employed disequilibrium in another radionuclide pair, 210 Po ($t_{1/2} = 138$ d) and its grandparent 210 Pb ($t_{1/2} = 22$ y), to predict POC fluxes despite evidence that 210 Po is more closely linked to the cycling of organic material within the plankton than is 234 Th (Fisher et al., 1983; Stewart and Fisher, 2003a,b; Stewart et al., 2005). Indeed, 210 Po has been shown to correlate with organic carbon and nitrogen in natural sinking particles (Sarin et al., 1999; Kim and Church, 2002; Friedrich and Rutgers van der Loeff, 2002; Murray et al., 2005). Many of the export flux results from the Joint Global Ocean Flux Study relied on ²³⁴Th /²³⁸U disequilibria. ²¹⁰Po and ²¹⁰Pb activities were measured during some of the same JGOFS studies (EqPac: Murray et al., 2005; Southern Ocean: Friedrich and Rutgers van der Loeff, 2002), and, in some instances, the POC fluxes from both radionuclide pairs were compared. For example, Murray et al. (2005) used both ²³⁴Th/²³⁸U and ²¹⁰Po/²¹⁰Pb disequilibria to determine export fluxes of POC in the JGOFS EqPac study. They estimated POC fluxes based on the radionuclide deficit and the POC/Th or POC/Po ratio on particles collected in drifting traps deployed at the same time as the radionuclide sampling and found that POC fluxes determined from ²¹⁰Po/²¹⁰Pb disequilibria were frequently greater than those from ²³⁴Th/²³⁸U. Other studies have indirectly compared the two isotope pairs (e.g., Shimmield et al., 1995; Kim and Church, 2002; Friedrich and Rutgers van der Loeff, 2002). Except for the work of Murray et al. (2005), prior efforts to use ²¹⁰Po as a POC flux proxy generally have not applied it in a manner analogous to that in which ²³⁴Th has been used, making a rigorous evaluation of the relative advantages of the two tracers difficult (Verdeny et al., 2005). Here we compare POC fluxes estimated from the water column disequilibrium between isotope pairs, ²¹⁰Po/²¹⁰Pb and ²³⁴Th/²³⁸U, with those measured in sediment traps at the DYFAMED site in the northwestern Mediterranean Sea in order to evaluate these three methods of POC flux estimation. Because the conversion of ²³⁴Th or ²¹⁰Po deficits into POC fluxes requires knowledge of the POC/²³⁴Th or POC/²¹⁰Po ratio of sinking material, we have measured simultaneously the ratios of POC/²¹⁰Po and POC/²³⁴Th in filterable particles $(>70 \text{ and } 1-70 \,\mu\text{m})$ collected by in situ pumps and in sediment trap material collected in time-series mode and in a fashion that separated particles according to settling velocity (SV). #### 2. Materials and methods #### 2.1. Sample collection Samples were collected during three multidisciplinary cruises as part of the MedFlux project at the DYFAMED site (Fig. 1; http://www.msrc.sunysb.edu/MedFlux/). The DYFAMED (DYnamique des Flux Atmospheriques en MEDiterranee, 43°25′N, 7°52′E) site is a French JGOFS time-series station in the Ligurian Sea. This site was chosen because it demonstrates characteristics of an open-ocean setting despite its relative proximity to shore. The site (2300 m Fig. 1. Map showing location of the DYFAMED site. Arrows indicate direction and relative magnitude of Northern (Liguro-Provencal) Current. ### Download English Version: ## https://daneshyari.com/en/article/4535585 Download Persian Version: https://daneshyari.com/article/4535585 <u>Daneshyari.com</u>