ELSEVIER

Available online at www.sciencedirect.com
e '
*»” ScienceDirect

Computer Standards & Interfaces 29 (2007) 205-215

COMPUTER STANDARDS
t INTEREAGES

www.elsevier.com/locate/csi

Enhanced event structures: Towards a true concurrency semantics
for E-LOTOS

M. Kapus-Kolar *

Jozef Stefan Institute, Jamova 39, SI-1111 Ljubljana, Slovenia

Received 19 September 2005; accepted 25 March 2006
Auvailable online 10 July 2006

Abstract

E-LOTOS is a standard process-algebraic language for formal specification of real-time concurrent and reactive systems. Its originally defined
semantics is based on interleaving of events. In the present paper, we propose an enhanced kind of event structures and show how to employ them
to give E-LOTOS processes a branching-time true concurrency semantics. The proposed event structures can model real-time processes with data
handling and excel in concise representation of event renaming and synchronization.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Event structures; Process algebra; E-LOTOS; Formal semantics; True concurrency

1. Introduction

E-LOTOS [4,19], an enhanced successor of LOTOS [3,1], is
one of the standard languages for formal specification of real-
time concurrent and reactive systems. According to the
operational semantics given in [4], an E-LOTOS specification
characterizes a process by its readiness to engage into various
kinds of atomic instantaneous events, where all internal process
events are by definition anonymous and all concurrent events
are represented as interleaved. That reflects the fact that LOTOS
was originally intended for specification of “temporal ordering
of observational behaviour” [3], where the possibility of
simultaneous events was neglected.

Such characterization of a process often fails to provide
sufficient information for its further refinement. For example,
when refining an event into a process, one must know the
relations of causality and conflict in which the event is engaged,
because at least some of the events constituting its refinement
are supposed to inherit them [6]. One might also want to
identify events which are truly concurrent, so that their
execution may be delegated to different concurrent components
of a system. Hence, it is convenient to model a process by its
events and their relationships, i.e., by its event structure.

* Tel.: +386 1477353 1; fax: +386 14262102.
E-mail address: monika.kapus-kolar@jijs.si.

0920-5489/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.¢s1.2006.03.007

With their detailed representation of process behaviour,
event-structure models are ideal not only for refinement of
events, but also for refinement of their relationships, necessary,
for example, when designing a distributed implementation of a
process, i.e., refining the relationships into a coordination
protocol [16]. On the other hand, event structures refrain from
modelling process architecture, following the idea that grouping
of events into subprocesses is, like their assignment to gates,
just a matter of interpretation [12]. Hence, an event structure is
indeed just a collection of events and relationships, i.e., a set of
orthogonal process properties.

The syntactic and semantic simplicity makes event structures
easy to use and ideal for incremental design. Elements of an
event structure may be added and removed at will, although it is
advisable to take care that the structure stays within a class
which can be easily manipulated with the available tools (e.g.,
to avoid causal ambiguity [20]). As increasingly more powerful
manipulation tools are available, we in this paper limit our
attention to the expressiveness of event structures.

A process-algebraic specification describes a set of elemen-
tary processes and their hierarchical composition. Elementary
processes often correspond to individual events and composi-
tion operators provide information on their relationships. The
problem is that when the operands of a composition operator are
themselves compound processes, the relationships between
their constituent events are described only implicitly. To


mailto:monika.kapusolar@ijs.si
http://dx.doi.org/10.1016/j.csi.2006.03.007

206 M. Kapus-Kolar / Computer Standards & Interfaces 29 (2007) 205-215

overcome the problem, process-algebraic languages are being
furnished with event-structure semantics.

For LOTOS without data, an event-structure semantics was
proposed in [13]. The semantics was extended to timed
processes [11], and subsequently employed [2] (still without
data) for ET-LOTOS [14], a predecessor of E-LOTOS. In the
present paper, we propose an event-structure semantics for
E-LOTOS.

The proposed true concurrency semantics for E-LOTOS is
not the only contribution of the paper. Perhaps even more
important is the newly developed kind of event structures,
which we name enhanced event structures, because in the name
E-LOTOS, “E” stands for “enhanced.” Enhanced event
structures can model real-time processes with data handling
and excel in concise representation of event renaming and
synchronization.

The paper is organized as follows: In Section 2, we analyse
the intuitive semantics of E-LOTOS processes and gradually
develop a kind of event structures sufficiently expressive for
their elegant modelling. Section 3 contains a detailed study of
event-structure semantics of elementary E-LOTOS processes
and of individual process composition operators. Section 4
comprises a discussion and conclusions.

2. Enhanced event structures
2.1. Events

The main objects in an event structure & are its events e,
collected in an E. An e represents atomic, instantaneous
execution of some tasks. Hence, it can be seen also as a Boolean
variable jumping from false (e has not yet occurred) to true (e
has already occurred).

The elementary events of an E-LOTOS process B, i.e., the
potential events of its elementary subprocesses, with no doubt,
correspond to the event concept defined above, and as such
qualify for inclusion into £ of the event structure modelling B.
The past practice has been to also include into £ the compound
events of B [13,11,2], i.e., interactions of its subprocesses. We
find the approach contra-intuitive, because in the original E-
LOTOS semantics, the behaviour of a B in no way depends on
how its already executed elementary events have synchronized.
In other words, while a B remembers the occurrence of its
elementary events, it does not remember the occurrence of its
compound events. Therefore, we propose that the members of £
are exactly the potential elementary events of the modelled B.
Thereby, the size of E is kept proportional to the number of the
elementary subprocesses of B, while otherwise it could grow
exponentially with the number of the parallel compositions
specified for the processes.

2.2. Preconditions and their triggers

An e can occur only if it is currently logically enabled, i.e., if
it has not been disabled or if all its disablings have been
cancelled. In E-LOTOS, an e in a B might be disabled from the
beginning or upon the occurrence of a disabling ¢’, while

cancellation of a disabling, i.e., enabling or re-enabling of e,
requires appropriate values of the input parameters of B and/or
execution of a set of events whose occurrence and the data they
have generated justify the cancellation.

In LOTOS or ET-LOTOS, an already enabled e might be
disabled, but is never re-enabled. Hence, enabling and disabling
of events, i.e., the relations of causality and conflict, are two
separate issues. In E-LOTOS, its suspend/resume operator
introduces resolvable conflicts. Examples of event structures
capable to model resolvable conflicts are [5,15,7], but none of
them addresses data and time.

Trying to represent enabling and disabling of events in an
integrated manner, we observe that for every E-LOTOS event e,
there exists a (possibly empty) set of preconditions, constraints
expected to be satisfied just before the occurrence of e. In an &,
let preconditions & be objects of a special kind, collected in a =.
For an e, let Z(e) list the associated &. For a &, let E(€) list the e
with £ in Z(e).

For every & and e in E(£), we introduce a Boolean trigger
1(e,£) and define that e is logically enabled if for every & in Z(e),
1(e,&) is false or € is true. Besides, if a 1(e,£) is false just before
the occurrence of e, it must be false also just after it. Hence, a
1(e,&) indicates a disabling of e for which & is the cancelling
condition. The approach is a generalization of that in [5].

2.3. Postconditions and their triggers

In E-LOTOS, the exact manner in which a gate event will
occur (what its execution time and other generated data will be)
is not known in advance, but there is in principle a constraint
expected to be satisfied just after the occurrence, i.e., a
postcondition constraint. In an &, let postconditions A be
objects of a special kind, collected in a A. For an e, let A(e) list
the associated A. For a A, let E() list the e with A in A(e).

For every A and e in E(1), we introduce a Boolean trigger
1(e,A) and define that just after the occurrence of e, every 4 in
A(e) with 1(e,A) true just before e must be true. Selectively
triggered postconditions facilitate full control of event simul-
taneity, like the event structures proposed in [15]. One might
want to use them to selectively restrict simultaneity of otherwise
independent events.

Example 1. To specify that an e; must occur simultaneously
with an e, or an es, but not with both, one could introduce into
A(ey) postconditions “e; Aes”, “e,@e;” and “false”, with

triggers “e, @ e3”, “Te, Aes” and “e, A e3”, respectively.

2.4. Aging and urgency

In the following, the term “time” denotes the internal time of
an evolving &£ or the modelled process, i.e., the value of its
clock, that starts from 0. For simplicity, we assume that the time
domain is discrete. During the dynamic evolution of an &, the
flow of time is reflected in the aging of its events. Whenever the
clock increases, so does the age a(e) of every e currently in the
state of idling. An e is in the state of idling when it has not yet
occurred, but is logically enabled. When an e finally occurs, its



Download English Version:

https://daneshyari.com/en/article/453561

Download Persian Version:

https://daneshyari.com/article/453561

Daneshyari.com


https://daneshyari.com/en/article/453561
https://daneshyari.com/article/453561
https://daneshyari.com

