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Abstract

A short recursive procedure for calculating the effectiveness factor for enzymes immobilized in porous spherical particles is presented. The
method is mathematically simple and very precise; it is valid for reversible Michaelis–Menten kinetics including, as particular situations, simple
Michaelis–Menten and product competitive inhibition kinetics.

The procedure is a modification of the two-parameter model previously published by the authors. The definition of an auxiliary dimensionless
concentration leads to a recursive equation which simplifies the resolution of the model by means of elementary numerical methods. The solution
algorithm has been transformed into a computer program, whose source code is appended.

The exact values of the effectiveness factors for zero and first order kinetics, as a function of the Thiele module, were compared with those
obtained with the numerical procedure proposed in this work. The good agreement between both results demonstrates the validity of the method.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The advantage of using immobilized enzymes on a porous
support is that the enzyme can be separated easily from the reac-
tion bulk and reused. However, since the reaction takes place
inside the particles, the reaction rate can be affected by the
external diffusion processes and by diffusion within the particles.

The internal diffusional effects can be quantitatively
expressed by the effectiveness factor, η, defined as the ratio of
the average rate inside the particle to the rate in the absence of
diffusional limitations [1].

Usually, the mathematical models for estimating the effec-
tiveness factor in heterogeneous enzymatic systems are based
on the following assumptions:

• The catalytic particle is spherical and its radius is R.
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• The enzyme is uniformly distributed throughout the whole
catalytic particle.

• The system is in a steady-state and isothermal.

Under these hypotheses, the mass balance differential equa-
tions for substrate and product in spherical coordinates, as well
as the boundary conditions, are:
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The type of resolution method used to solve the differential equa-
tions and its degree of complexity depends on the mathematical
form of vr.

Most previously published enzymatic kinetic models involve
non-reversible Michaelis–Menten kinetics, and are solved by
numerical calculus. Among these models, some of the most
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Nomenclature

Areanew area under the new profile of C
Areaold area under the old profile of C
C dimensionless substrate concentration, defined in

Eq. (8)
CP product concentration inside the spherical particle
CPE equilibrium product concentration
CPR local product concentration at the particle surface
CS substrate concentration inside the spherical parti-

cle
CSE equilibrium substrate concentration
CSR local substrate concentration at the particle sur-

face
DP effective product diffusivity inside the particle
DS effective substrate diffusivity inside the particle
Keq equilibrium constant
KM Michaelis constant
KP competitive product inhibition constant
m dimensionless module defined in Eq. (34)
N number of subintervals of the spherical particle

radius
r particle radial coordinate
R particle radius
S dimensionless substrate concentration, defined as

(CS–CSE)/(CSR–CSE) in the two-parameter model
[8]

vC dimensionless reaction rate, defined in Eq. (10)
vr local reaction rate per unit of particle volume
vS dimensionless reaction rate, defined in Eq. (4)
VM maximum reaction rate per unit of particle volume

Greek letters
α dimensionless module defined in Table 1, for the

two-parameter model [8]
ε convergence limit of the calculation procedure
Φ dimensionless module defined in Table 1, for the

two-parameter model [8])
η effectiveness factor
ρ dimensionless particle radial coordinate

Subscripts
i ith node (finite difference method)
new new calculated value (finite difference method)
old previous calculated value (finite difference

method)

relevant are those proposed by Engasser and Horvath [2], for
a simple Michaelis–Menten kinetics, modified by Tuncel [3];
the solution developed by Xiu et al. [4] for product competitive
inhibition kinetics; or the two-substrate model formulated by
Engasser and Hisland [5].

However, little attention has been paid to more complex kinet-
ics such as reversible reactions [6]. The three-parameter model
developed by the present authors [7] and the two-parameter

model reformulated by the same authors [8] could be consid-
ered the most general mathematical model published to date. The
models were solved for reversible Michaelis–Menten kinetics,
which also allows the evaluation of simple Michaelis–Menten
and product competitive inhibition kinetics. The first model has
been successfully applied in the design of heterogeneous enzy-
matic reactors: fixed bed reactors [9], continuous tank reactors
[10] and fluidized bed reactors [11]. Recently the methodol-
ogy used in these papers has been applied to the simulation of
a packed bed immobilized enzyme reactor performing lactose
hydrolysis [12,13].

All the above-cited kinetic models were solved by numerical
calculus because vr is a non-linear function of the substrate and
product concentrations. However, approximate analytical solu-
tions, valid only in a limited range of the parameters, have also
been published [14–16].

Several numerical methods have been used to solve the
boundary problems outlined in Eqs. (1) and (2). The most
frequently used are finite differences [17] and orthogonal col-
location [18], which transform the problem into a system of
algebraic equations. When the mass balance equations are non-
linear, as in enzymatic kinetics, the result is also a non-linear
equations system. The solution obtained by the finite differ-
ences method may not be unique and, moreover, convergence
problems could appear. On the other hand, since the orthogonal
collocation method uses polynomial expressions to approach the
concentration profiles, the method is not very reliable when high
diffusional limitations occur.

In the light of the above, many authors have used initial value
methods such as the Runge–Kutta method. Such methods need to
know the substrate concentration value at r = 0. Since this value
is unknown, the concentration profiles must be calculated based
on an assumed value which is adjusted by successive calculations
(shooting method) [19].

In this work a modification of the two-parameters model of
Gómez et al. [8] is presented. A simple variable change leads
to a modification in the value of the boundary condition in the
particle centre, which becomes a known value of the new dimen-
sionless concentration. The application of the finite differences
method results in a recurrence expression, applicable in every
radius node, to calculate substrate concentrations, thus avoiding
the formulation of a complicated system of algebraic equations.

2. Theory

The diffusion-reaction equation of the two-parameters model
[8] is:
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The dimensionless reaction rate expression and the boundary
conditions are:
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α + S
(4)
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