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a b s t r a c t

A memory efficient field programmable gate array (FPGA) method is described that
facilitates the processing of the continuous wavelet transform (CWT) arithmetic
operations. The CWT computations were performed in Fourier space and implemented
on FPGA following several optimization schemes. First, the adapted wavelet function
was stored in a lookup table instead of computing the equation each time. Second, the
utilization of FPGA memory was highly optimized by only storing the nonzero values of
the wavelet function. This reduces 89% of the memory storage and allows fitting the entire
design into the FPGA. Third, the design decreases the number of multiplications and
shortens the time to produce the CWT coefficients. The proposed design was tested using
EEG data and demonstrated to be suitable for extracting features from the event related
potentials. Fourth, wavelet function scales were eliminated which saves further resources.
The achieved computation speed allows for real time CWT application.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The one dimensional continuous wavelet transform (1-D CWT) is a widely used feature extraction tool for nonstationary
signals with applications to many different disciplines [1–3]. The complexity implied in the CWT belongs to the high number
of convolutions involved especially between large sequences. In case of using the CWT in real time applications, high pro-
cessing speed becomes critical to overcome these heavy convolution calculations and this can be achieved by using the field
programmable gate array (FPGA) platform [4]. There are only a few studies in the literature concerning the implementation
of the CWT into VLSI [5–9]. The complexity of mapping the CWT convolver in VLSI design was investigated in [5] and various
realizations were presented, although they all depend on the convolution method. Other works rely on a General Purpose
Processor (GPP) or DSP processor [7,8] or require high end FPGA devices [6,9] to implement the CWT. What has not been
published is a CWT design that is fast and can be implemented on low cost FPGA devices.

Mathematically, the CWT is the convolution between the analyzed signal X(t) and the wavelet function w(t) in the time
domain such that [10]:

Cðs; bÞ ¼
Z 1

�1
XðtÞ:w�s;bðtÞ:dt ð1Þ

where C(s, b) is the wavelet coefficient at time b and scale s and the symbol ⁄ refers to the complex conjugate.
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Eq. (1) can be implemented in the time domain for small size of input signals where the number of total convolutions is
also small.

An alternative method to calculate the CWT for a sampled signal is to use Fourier space instead of the time domain [11].
This can be achieved by transforming both input signals of (1) X(t) and ws,b(t) into the frequency domain using the fast Fou-
rier transform (FFT) which replaces the complex convolution with simple multiplication using the following relationship
[12]:

g1ðtÞ � g2ðtÞ () G1ðxÞ � G2ðxÞ ð2Þ

where lowercase g is the time domain components and uppercase G is the relative frequency domain representation. The
product can be transformed back to the time domain using the inverse FFT giving the CWT coefficients [11]. Some of the
most commonly used nonorthogonal wavelet functions in the CWT analysis are the Morlet, Paul and the Mexican hat. Their
formulas in the time and frequency domain are shown in Table 1 [11] where the representation of these formulas in both
time and frequency domains are computationally complex. For example, in the time domain, the Morlet wavelet function
consists of a complex sinusoid in the term eix0t multiplied by a Gaussian envelope. The spectrum of this modulated Gaussian
permits for simple interpretation of results due to its smoothness [1]. The normalization factor p�1/4 ensures that the Morlet
wavelet has unit energy. In the frequency domain, the Morlet wavelet uses the Heaviside step function and in both domains,
the Morlet expressions are complex. The mathematical background for the Paul and the DOG wavelet functions are also com-
plex in both domains as one can see from Table 1.

The selection of the more appropriate wavelet function for a given application depends on the information required to be
extracted from the signal. For example, detecting evolutionary or transient phenomena in a signal requires a wavelet func-
tion that reflects more localized wavelet coefficients [13].

Compared against the previous works presented above, the CWT design in this paper is a novel, generalized and config-
urable feature extraction engine for low end FPGA platforms. The design uses Fourier space techniques and employs several
optimization methods to improve speed and significantly reduce resource requirements. The proposed design is not limited
to a fixed wavelet function w(t) but can be easily adapted to different wavelet functions without the need to resynthesize or
redesign the circuit. The proposed design uses optimized lookup tables (LUTs) in a block RAM (BRAM) to store the pre-cal-
culated wavelet function. This is advantageous since the pre-calculated wavelet function only needs to be downloaded to the
BRAM which means that the circuit design is not affected. It also means that the contents of the LUT can be easily replaced by
another wavelet function when required by changing the LUT contents. This makes the low cost Spartan 3AN (1.4 M gate) [4]
suitable for the proposed design.

This paper is organized as follows; Section 2 presents the CWT design description, Section 3 gives the optimizations used
in the CWT design and Section 4 outlines an implementation example based on Electroencephalogram (EEG) analysis. Sec-
tion 5 presents the discussion and conclusions are provided in Section 6.

2. The proposed design

The computation of the CWT in Fourier space has been previously shown as an efficient and quick approach to implement
the CWT using the FFT [12]. The design flow for the FFT based digital CWT can be seen in Fig. 1 [14]. From Fig. 1, block A
contains the wavelet function in the time domain, g2(t), at different scales and the FFT process required to transfer this func-
tion to the frequency domain. Both the input signal, g1(t), of length 2n, and the wavelet function (g2(t)) are stored in a buffer.
After applying the FFT on both g1(t) and g2(t) the results G1(x) and G2(x) are stored in buffers C1 and C2 respectively. The
contents of these two buffers are multiplied before applying an IFFT to produce the wavelet coefficients at all the wavelet
scales.

Closer examination of the design flow for the CWT in Fig. 1 reveals that the wavelet functions in block A can be imple-
mented using 3 possible methods:

Table 1
Three different wavelet bases in two domains [11].

Function Time domain (t) Frequency domain (x)

Morlet (x0 = frequency) p�1=4eix0 te�t2=2 p�1=4HðxÞe�ðsx�x0Þ2=2

Paul (m = order) 2m im m!ffiffiffiffiffiffiffiffiffiffiffi
p 2mð Þ!
p ð1� itÞ�ðmþ1Þ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m 2m�1ð Þ!
p HðxÞðsxÞme�sx

Mexican hat (m = derivative) �1ð Þmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C mþ1

2ð Þ
p dm

dtm e�
t2
2

� �
imffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C mþ1
2ð Þ

p ðsxÞme�ðsxÞ
2=2

H(x) is the Heaviside step function (for Morlet and Paul), H(x) = 1 if x > 0, H(x) = 0 elsewhere, x0 is the nondimensional
frequency, s is the scale and p�1/4 is the normalization factor.
C stands for the gamma function.
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