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a b s t r a c t

Ecologists have an unprecedented array of bio-logging technologies available to conduct in situ studies

of horizontal and vertical movement patterns of marine animals. These tracking data provide key

information about foraging, migratory, and other behaviours that can be linked with bio-physical

datasets to understand physiological and ecological influences on habitat selection. In most cases,

however, the behavioural context is not directly observable and therefore, must be inferred. Animal

movement data are complex in structure, entailing a need for stochastic analysis methods. The recent

development of state-space modelling approaches for animal movement data provides statistical rigor

for inferring hidden behavioural states, relating these states to bio-physical data, and ultimately for

predicting the potential impacts of climate change. Despite the widespread utility, and current

popularity, of state-space models for analysis of animal tracking data, these tools are not simple and

require considerable care in their use. Here we develop a methodological ‘‘road map’’ for ecologists by

reviewing currently available state-space implementations. We discuss appropriate use of state-space

methods for location and/or behavioural state estimation from different tracking data types. Finally, we

outline key areas where the methodology is advancing, and where it needs further development.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Within marine ecology, a very general set of ecological ques-
tions has emerged that researchers address using bio-logging
techniques. For example, where and when do animals move?
What are the physiological costs of these movements? How do
these movements relate to environmental variability and the ever
changing distributions of heterogeneous resources? What are the
implications of individual movements at the population level?
How might animal movements and population distribution be
affected by future environmental change in the ocean? Answering
these important ecological questions becomes a challenging
statistical problem when using most bio-logging data.

Telemetry-based studies of animal movement ecology, phy-
siology, and environmental interactions generally rely on a
compartmentalized approach to analysis of tracking data. This
approach typically has three stages: (1) error correction; (2) cal-
culation of summary movement metrics from corrected tracks;
and (3) biological inference through statistical or non-statistical

analysis (Patterson et al., 2008). There are three key drawbacks to
this approach. First, implicit assumptions, which may or may not be
valid, regarding an animal’s movements are required to remove
spurious location errors (e.g., Austin et al., 2003). Second, measure-
ment error effects are not separated from the underlying movement
processes that are of interest, which can bias analyses (Bradshaw
et al., 2007). Third, the analysis tools associated with this approach
tend to be correlative, comparative (using simple hypothesis tests),
or pattern-based; all of which are limited in their scope for direct
examination of the ecological and physiological mechanisms that
underpin animal movement. Adopting a stochastic, model-based
approach that allows mechanistic models of the movement process
to be fit directly to telemetry data, while accounting for measure-
ment error when appropriate, is more rigorous and powerful but
also requires more complicated analysis tools.

Recent reviews (Patterson et al., 2008; Schick et al., 2008) have
publicized the notion of state-space model (SSM1) approaches for
studying animal movement and these tools are now being more
widely applied. We see signs within the bio-logging community
that SSM approaches are making their way into analyses of many
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kinds of telemetry data. A total of 21 oral and poster presenta-
tions at the Fourth International Symposium on Bio-logging
(March 2011), held in Hobart, Tasmania, Australia, included some
form of SSM analysis of telemetry data or further developed their
implementation.2 In many cases, SSMs are used to filter error-
prone Argos (2011) or light-based (Hill, 1994) location data and/
or to estimate unobserved behavioural states of animals. Despite
these promising signs, we feel there is a gap to be bridged in the
general understanding of SSMs, both in the technical aspects of
their application and in the interpretation of their results. It is,
therefore, timely to build a methodological road map for bio-
loggers outlining currently available methods and applications
appropriate to particular problems in the study of animal move-
ment and behaviour.

Here we explain SSMs in the context of marine animal tracking
data by providing the necessary background, technical details,
and examples for field ecologists to appreciate the flexibility and
power of these statistical tools. We outline general considerations
for fitting SSMs, for querying their fit to data, and for model selection.
We highlight several previously published SSM approaches for
tracking data and the situations in which one may be preferred over
others. Finally, we suggest areas where the methods are advancing
and where further work is required.

2. General explanation of state-space methods

State-space models encompass a range of time series methods
that estimate the state of an unobservable process from an
observed data set. The earliest example of state-space methods
used for estimation purposes is the celebrated Kalman filter (KF)
(Kalman, 1960, see also Section 5) which is now used in applica-
tions from aerospace to finance, as well as for geolocation of
animals from tagging data (Sibert et al., 2003). The state-space
paradigm is not limited to time series analysis: it applies also to
pure analysis problems, one example from marine ecology being
larval transport and growth (e.g., Christensen et al., 2008), and to
dynamic optimization problems, e.g., arising in behavioural ecology
(Houston and McNamara, 1999). In ecology, state-space methods
are used to model single individuals, population dynamics (Brinch
et al., 2011; de Valpine and Hastings, 2002), and marine ecosystem
dynamics (Evensen, 2003).

The notion of the state is pivotal in SSMs, as the name suggests.
In a bio-logging context, the most common state variables used (to
date) are an animal’s position (Anderson-Sprecher and Ledolter,
1991; Jonsen et al., 2003; Royer et al., 2005; Thygesen et al., 2009)
and it’s behaviour, the latter is usually represented as a discrete
variable with two or more nominal categories such as ‘‘foraging’’ and
‘‘not foraging’’ or ‘‘migratory’’ and ‘‘resident’’ (Jonsen et al., 2005;
Morales et al., 2004; Patterson et al., 2009; Pedersen et al., 2011b).
Mathematically, a collection of variables constitute the state of a
dynamical system, if they summarize the previous history of the
system, so that predictions about the future can be made solely from
the current state. Choosing the right number of state variables to
describe a real system is a delicate balance between realism and
feasibility, and choosing the most important state variables requires
insight into not just the biology of the animal, but also the data
quality and the nature of the statistical estimation problem.

The key ingredient in a stochastic SSM is the process model, an
equation that describes how the state evolves randomly in time. A
simple example of a process model is a random walk, which
verbally can be formulated as follows: if the position of an animal

at time t is known to be xt , then the position one day later is
Gaussian with mean xt and variance V. Here V is a parameter, the
variance of the daily move distance. A mathematical formulation
of this is

xtþ19t �Nðxt ,VÞ ð2:1Þ

Note that the process model is written in terms of conditional
probability distributions. If the state xt at time t is known, how is
the later state xtþ1 distributed? Mathematically, the notion of a
state is formalized by the Markov property: given the current
value of the state, future state variables are statistically indepen-
dent of past state variables. These conditional distributions, which
are known as transition probabilities, are sufficient to describe all
state dynamics. Note also that we distinguish between states
and parameters: states like xt evolve in time and describe the
immediate situation, while parameters like V are typically con-
stant in time and describe the underlying properties of the animal
or mechanism of the system.

In this example, the state variable is continuous, i.e. may take
any real value. In other cases, the state may be purely discrete, i.e.
only a finite (or countable) number of different states are possible.
In yet other examples, the state is composed of both continuous
and discrete state variables. Similarly, the time variable may be
continuous or discrete. Even if, for example, the position of an
animal is defined at all times, we may choose to have the model
represent only the daily position.

The process model is written entirely without reference to
available data. Of course, choosing a suitable process model requires
thought about available data, but the state of the system evolves
regardless of how or if we observe the system.

For estimation purposes, the process model is complemented
by one or more equations, the observation model, which describe
the link between each observed data point and the state of the
system at the time of observation, or at regular time intervals
within which observations may or may not occur. The observation
model describes what happens at the time of observation, so does
not make any reference to the dynamics in the underlying process
model. This structure is depicted in Fig. 1. Also these equations
specify conditional probability distributions: if the state at time t

were known to be xt , how is the measurement yt distributed? It
is important to appreciate the generality of this framework: the
measurement may be a state variable subject to measurement
error, for example, a position estimated with the Argos satellite
system, but the measurement may also be any other quantity
which holds some information about the state, for example, an
animal’s travel speed or sea surface temperature (SST). The
observation model may specify several different types of mea-
surements which may be taken simultaneously or at different
points of time. Like the process model, the observation model

Fig. 1. Structure of a SSM for estimation. The state variable evolves randomly

in time, starting at x0 and ending at xtN
. At times t1 ,t2 , . . . ,tN , measurements

y1 , . . . ,yN are taken. In this graphical representation of the model, an arrow from

one variable (say, xti
) to another (say, yi) indicates that the model is written in

terms of the conditional distribution of yi given xti
, and furthermore that

conditional on xti
, yi is statistically independent of all other variables since they

are not connected with arrows.

2 http://www.cmar.csiro.au/biologging4/documents/AbstractsandProgram_

final.pdf, last accessed on 25/05/2012.
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