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The goals of the Autonomous Ocean Sampling Network (AOSN) are reviewed and progress toward those
goals is assessed based on results of recent, major field experiments. Major milestones include the
automated control of multiple, mobile sensors for weeks using spatial coverage metrics and the
transition from engineering a reliable data stream to managing the complexities of decision-making
based on the data and the possibilities of timely feedback.
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1. Introduction

The Autonomous Ocean Sampling Network (AOSN) concept
(Curtin et al., 1993) leverages autonomous mobile platforms and
assimilative dynamic models to observe and predict dynamic
ocean fields. While advances in autonomous underwater vehicles
have enabled distributed observation of dynamic processes by
fleets of robotic vehicles, continuous fields must still be realized
from a limited number of discrete observations. Dynamical
models can interpolate and extrapolate observations determinis-
tically, and thus can generate continuous realizations of ocean
fields from discrete measurements. Realizations based on statis-
tical models can provide continuity for random variables. The
temporal evolution of three-dimensional ocean fields results from
both deterministic and stochastic processes, and thus even with
perfect observations, prediction skill will deteriorate in time. The
great challenges of AOSN revolve around learning how to better
sample the ocean field, and improving the skill of assimilative
models for synthesis and prediction of the evolution of those
same fields.

Historically, maps of ocean fields have been based on arrays of
fixed-point (moorings, stations) and Lagrangian (floats) data, and,
more recently, on quasi-synoptic cross-sections (tow-yos). The
time scale of experiment design, deployment, data acquisition,
and analysis was years. Such experiments yielded time series that
revealed a broadband cascade in the ocean energy spectrum.
High-resolution, local maps associated with specific expeditions
onboard research vessels yielded initial insights into processes
governed by spatial gradients. Observations from spacecraft and
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with surface radar provided powerful new mapping capability for
near-surface ocean fields. The current Argo array provides for the
first time persistent, comprehensive subsurface observations on a
global scale. The sampling resolution of this Lagrangian array,
however, is controllable only by initial seeding. Plans to expand
and stabilize an ocean observing system have been formulated
and are slowly being implemented.

Pragmatic calculations using true ocean time and space
scales and the real cost and complexity of in-situ observa-
tions show that a systemic challenge of reducing error in
ocean field estimation is sparse sampling. The AOSN initiative
(Curtin et al., 1993; Curtin and Bellingham, 2001) was launched
to develop new tools and methodologies to address the
sparse sampling problem and reduce errors in ocean field
estimation to enable definitive hypothesis testing. The
premise is that there is a significant advantage to adapting the
distribution of observations on time and space scales comparable
to the processes driving the variability, and to persisting long
enough to accumulate robust statistics on coherence scales. This
premise is supported by the growing literature on targeted
observations spanning a wide range of disciplines including
meteorology.

For this introduction, we draw on experience from the AOSN-II
field program in August 2003 in Monterey Bay. We also consider
follow-through from that field program, as manifested in the
Adaptive Sampling and Prediction (ASAP) program and the
Monterey Bay 2006 field program (MBO06). AOSN efforts have
been directed toward three principal contributions:

(1) Multiple, mobile sensors that can resolve synoptic fields and
spatial gradients to a desired level of precision: Mapping of
transient spatial fields with minimum error requires network-
class autonomous vehicles that are in a practical cost-size
envelope (Curtin et al., 2005). Staying within this envelope
enables enough in-water testing within a realistic budget to
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achieve acceptable reliability and ultimate use of such
vehicles. Since mobile, platforms with persistence are slow
due to energy constraints, their trajectories can be greatly
influenced by ambient currents. If positioned poorly, they can
be placed disadvantageously; for example, clustered in a
region far from an evolving area of interest. Thus the
performance of an AOSN is intimately connected with feed-
back control and decision-making processes.

(2) Control of mobile sensor arrays in a feedback loop with response

time sufficient to stabilize and reduce error in evolving mapped
fields: This loop not only provides a means to constrain errors
in mapping gradients with multiple vehicles using local
linearization, but also provides the flexibility to respond
quickly to unexpected anomalies. Underlying this need is a
fundamental design question: where should control authority
reside in the system? Communications are not always readily
available, and consequently mobile platforms must have some
level of control authority. Balancing this is the reality that an
individual vehicle will not be privy to information generated
by other AOSN components, and thus may make non-optimal
decisions if not controlled centrally. Finding the right balance
of autonomy for individual assets and investing in the right
level of communications to support collective planning
remain challenging problems.

(3) Decision making that provides a range of options for the
experimenter faced with uncertainty: Such options are easy to
understand when directly connected to testing hypotheses or
assessing the skill of predictive tools such as numerical
models. Recalling that AOSN activities involve collaboration of
teams of PIs, the availability of well-framed options helps
building consensus on the best course of action when
intuition is weak, there is disagreement among experts with
similar objectives, or there are a variety of competing
objectives. Practical experience from the AOSN-II and MBO06
field programs taught that different goals can often be
accommodated within sampling plans. Thus the premature
down-select of objectives can be counterproductive. Once the
various sampling needs are understood, it is often possible to
take advantage of the multiplatform nature of the observation
system to satisfy multiple investigative needs.

The sensitivity of AOSN performance to real-time decision
making creates many demands, not all of which are technical.
AOSN, as a system of systems, depends on individual elements
operating as components of an integrated system (Fig. 1). Many of
the components deployed to date have been developed by and are
operated by individual research groups, each with their own
agendas. In a traditional field program, investigators depend
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Fig. 1. Autonomous Ocean Sampling Network (AOSN) as a critical element of an ocean mapping and prediction system (AOSN system). Blue boxes are essential tools. AOSN
technology enables the operation of timely feedback loops that converge on minimum error states. Feedback evolves from human to autonomous control with the

development of intelligent algorithms based on experience.
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