
Indexing techniques for processing generalized XML documents

Ghassan Z. Qadah
Computer Science & Engineering Department, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

a b s t r a c ta r t i c l e i n f o

Article history:
Received 26 November 2015
Received in revised form 19 June 2016
Accepted 1 July 2016
Available online 2 July 2016

The Extensible Markup Language (XML) data model has recently gained huge popularity because of its ability to
represent a wide variety of structured (relational) and semi-structured (document) data. Several query lan-
guages have been proposed for the XML model, the most-widely used one is the XQuery. An important compo-
nent of an XQuery is its XPath expression which retrieves a set of XML documents to be manipulated by the
associated XQuery. An XPath expression can be of several types, amongwhich are the containment queries. Tra-
ditional research of processing containment queries has concentrated on data retrieval from independent XML
documents; not much research has been directed towards interlinked XML documents. This paper reviews this
area of research and shows the adequacy and correctness of one of the reviewed algorithms when applied to in-
dependent XML documents. However, the direct application of this algorithm to process queries against
interlinked XML documents is shown to generate incorrect results. To remedy such a situation, two new algo-
rithms and the associated indexing structures are developed and shown to perform correctly in processing
both independent and/or inter-linked XML documents. In addition, one of the new algorithms is shown to min-
imize the storage requirement of the intermediate lists generated throughout its execution and therefore im-
proving further the algorithm's space and time performance.

© 2016 Published by Elsevier B.V.

Keywords:
Algorithms
Containment queries
Database system
Extensible Markup Language
Query processing
XLink

1. Introduction

A database is a huge repository of interrelated data elements [13].
Traditional databases are structured using the relational model [9]. In
this model, data is organized into relations viewed as two-
dimensional tables. The column headers of a table represent the attri-
butes of the relation, whereas, the table's rows are the relation's tuples.
Relational databases are accessed using a very high-level language
called Structured Query Language (SQL) [13]. A statement of this type,
referred to as a query, specifies the data to be retrieved from the data-
base. To process a query, a software system, the database management
system (DBMS), generates a number of execution plans, selects the one
with the least cost, and then executes it to retrieve the requested data. In
a relational database, a given query plan consists of a sequence of oper-
ations called the relational algebra operations (select, project, join, etc.).
The execution of these operations; especially projection, join and transi-
tive closure; against very large collection of data is generally slow.Many
serial and parallel algorithms have been proposed to speed-up the exe-
cution of these operations. Some of these algorithms and their perfor-
mance evaluation can be found in [1,12,18–20,22–23]. It is worth to
note here that the relational model has many advantages including its
simplicity, rigorous mathematical foundation, and easiness to program

and use. However, it has also many limitations, including its poor
modeling capability, especially for semi-structured and unstructured
data.

To overcome the relational model drawbacks, new and powerful
data models, with semantics richer than those of the relational one,
have been introduced. Among those models are deductive [14],
object-oriented [3] and XML [5]. The XML (Extensible Markup Lan-
guage) model, organizes data, into collections of nested elements and
character sets (strings), referred to as documents. The XML data
model has gained huge popularity because of its ability to model a
wide variety of structured (relational) and semi-structured (docu-
ments) data as well as its use in integrating heterogeneous data sources
(traditional relational databases, data files, email messages, web pages,
etc.) for displaying data on a variety of devices, including personal com-
puters, personal digital assistants (PDAs) and smart mobile phones [16,
17].

Several Query languages have been proposed for the XML data
model [4,6]; the most-widely used one is XQuery [4]. An important
component of the XQuery is the XPath expression which defines the
set of XML documents to be manipulated by the associated XQuery.
An XPath expression can be of several types, among which are the con-
tainment [24] ones. A containment query retrieves the XML elements
based on the containment of these elements within some other ones.
Two types of containment queries do exist, namely direct and indirect
containments, both of which will be presented in details in Section 2.2.

Computer Standards & Interfaces 49 (2017) 34–43

E-mail address: gqadah@aus.edu.

http://dx.doi.org/10.1016/j.csi.2016.07.002
0920-5489/© 2016 Published by Elsevier B.V.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.07.002&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.07.002
mailto:gqadah@aus.edu
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.07.002
Unlabelled image
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi

Traditional containment query processing research [2,7,21,24] has
concentrated on developing data retrievals algorithms from indepen-
dent XML documents. In this paper, we review this area of research
and show the adequacy and correctness of one of the reviewed algo-
rithmswhen applied to independent XML documents. However, the di-
rect application of this algorithm to process queries against interlinked
XML documents is shown to generate incorrect results. In this paper,
two new algorithms and the associated index structures are introduced
and shown to perform correctly in processing both independent and/or
interlinked XML documents. In addition, one of the new algorithms is
shown to minimize the storage requirement of the intermediate lists
generated throughout the execution of such an algorithm and therefore
improving further the it's space and time performance.

The rest of this paper is organized as follows. Section 2 presents
some background material concerning the XML database model and
its query types, whereas; Section 3 reviews the processing of the con-
tainment queries against independent XML documents. Section 4 pre-
sents two new algorithms that handle the processing of XML
independent and inter-linked documents. Finally, Section 5 presents a
summary, some concluding remarks and future work.

2. Background

2.1. The Extensible Markup Language (XML) data model

The relational data model [9] is simple and easy to use; however, its
ability to model data with complex structures is very limited. To over-
come this limitation, the Extensible Markup Language (XML) model
[5] has been introduced. This model, as shown in Fig. 1.a, organizes
data into collections of nested elements and character sets (strings);
these collections are referred to as documents. For example, Fig. 1.a pre-
sents a simple XML document that contains data about a specific car. “b
carN, b/carN”, “bvinN, b/vinN” and “bownersN b/ownersN” of Fig. 1.a are
examples of the XML elements, whereas, “John”, “Debra” and “999” are
examples of the character sets/strings. An element within an XML
document can be referred to by its tag; the element “bcarN, b/carN”,
for example, is referred to by car. Moreover, an XML element may
contain other elements and/or strings. Element car, for example,
contains, as shown in Fig. 1.a, one owners element which in turns
contains two owner elements. Elements in the XML model may also
be nested to any depth. For example, the “car” element, as shown in
Fig. 1.a, contains two owner elements, each owner element contains
its name and ssn.

An XML document, as shown in Fig. 1.b, can also be viewed as a
rooted, ordered tree. The nodes in this tree represent the elements
and strings of the XML document. The root node of the tree, node car

of Fig. 1.b, represents the outermost element of the XML document,
namely, the car element of Fig. 1.a. The leaf nodes of the tree, on the
other hand, represent the document's string data. The other elements
of the XML document, as shown in Fig. 1.a, are represented by the inter-
nal (non-leaf) nodes of the tree. A node in the tree is labeled by the tag
of the element or the string it represents. An edge from one node in the
tree to one of its child nodes represents a direct element-subelement
(parent-child or direct-containment) relationship between the two
nodes. On the other hand, a path between two nodes in the tree,
going from top to bottom, represents an ancestor-descendant (indirect
containment) relationship between these two nodes. For example and
as shown in Fig. 1.b, the node/element owners directly contains two
owner elements, whereas, it indirectly contains two name and two
ssn elements.

It is important to note here that the fact that the XMLmodel has a
general tree structure explains its power in representing complex
data structures as opposed to the limited representation power of
the relational model. However, this improvement comes with a
price, basically, an increased complexity when processing the XML
data.

2.2. The XML database and queries

In general, an XML database is a huge collection (forest) of trees;
each tree is similar to the one presented in Fig. 1.b. To query such a da-
tabase, several languages have been proposed, namely, Quilt [6], XML-
QL [11] and XQuery [4]. XQuery, being developed by a W3C working
group, has emerged as the front-runner. An XQuery contains two
types of components, namely, the XPath expressions [8], which locate
elements in the XML database, and the XML functions that are used to
manipulate the located elements. It is interesting to note here that the
XQuery standard has over 800 built-in functions and provides a mecha-
nism to build up newXQuery functions. A simple example of anXQuery,
which output the number of owners elements in the car XML database,
is presented next.

xquery version “1.0”
let $owners = doc(“carsdb.xml”)/car/owners
return count($owners)

where “carsdb.xml” is the XML database containing all of the car docu-
ments. On the other hand, doc(“carsdb.xml”), calls an XQuery built-in
function named doc and passes to it the name of the XML database to
connect to and open. Whereas, the expression “$owners = doc (“cars.
xml”)/car/owners” is an XPath expression that locates all owners ele-
ments that are the children of car (see Fig. 1) and store these elements
in the XQuery variable $owners. Finally, the expression “return count

Fig. 1. Different representations of an XML document.

35G.Z. Qadah / Computer Standards & Interfaces 49 (2017) 34–43

Image of Fig. 1

Download English Version:

https://daneshyari.com/en/article/453969

Download Persian Version:

https://daneshyari.com/article/453969

Daneshyari.com

https://daneshyari.com/en/article/453969
https://daneshyari.com/article/453969
https://daneshyari.com

