
A metamodel-based definition of a conversion mechanism between
SOAP and RESTful web services

Antonio Navarro ⁎, Anayansi da Silva
Dpto. Ingeniería del Software e Inteligencia Artificial, Universidad Complutense de Madrid, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 10 April 2015
Received in revised form 28 January 2016
Accepted 28 March 2016
Available online 19 April 2016

Nowadays there are several frameworks that permit the conversion between SOAP and RESTful web services.
However, none of these frameworks defines a high-level characterization of the interchange process, hindering
full understanding of this process. This paper provides a metamodel-based approach that formalizes the conver-
sion between SOAP and RESTful web services, clarifying this process. This approach can be used for guiding the
ranslation process in forthcoming conversion frameworks and thepublication of services in IDEs. In order to char-
acterize the conversion mechanism three MOF metamodels are defined: SOAP, RESTful and intermediate SOA
metamodels. This intermediatemetamodel is used as a bridge between the other twometamodels. QVT Relations
transformation rules between SOAP, RESTful and SOA metamodels are defined for a formal characterization of
the transformation process.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
SOA
WSDL
WADL
MDA
MDD

1. Introduction

Service-Oriented Architecture (SOA) is a successful architecture
nowadays. This architecture focuses its attention on the business
services provided by a system [1]. Depending on how the service is
implemented and provided to its clients, SOA architecture can have dif-
ferent implementations. Thus, CORBA [2] can be an implementation of
SOA. However, nowadays web services are the most common imple-
mentation [1].

At present there are twomain approaches when implementing web
services: SOAP web services [3] and RESTful web services [4].

In both cases a software function (a service) is invoked through the
World Wide Web. However there is an important difference: in the case
of RESTful web services the client uses a URL to invoke a remote process.
Therefore, the client is responsible for the encoding of the information
transferred and received (e.g. using XML [5] or JSON [6]), as well as for
opening and closing the connection. In the case of SOAP web services a
layer ofmiddleware isolates clients from thedata encoding/decoding pro-
cess and from connectionmanagement, performing an invocation to a re-
mote object written in the same programming language as the client.

In both cases the client is unaware of the service implementation
language, which can be the same as or different from the client

language. However, in the case of RESTful services, the client has to
make a significant effort to invoke the service, while SOAP service invo-
cation is much simpler. Nevertheless, the invocation of RESTful services
is less resource- and time-consuming for both the client and the service
provider than in the case of SOAP web services, where the middleware
layer has to be deployed on both the client and the service provider
sides.

Because SOA is intended for the integration of heterogeneous
systems it is not unusual for both SOAP and RESTful web services to co-
exist in the same organization. In order to unify the approach, there are
currently frameworks that make the conversion between SOAP and
RESTful web services possible.

Themain problem in the use of these frameworks is that they do not
provide a high-level model that describes the conversion mechanisms,
hindering understanding of the process and thus the maintenance of
the converted web service.

This paper describes a high-level modeling for the conversionmech-
anism between SOAP and RESTful web services. The main idea is to
provide an intermediate MOF (Meta Object Facility) metamodel [7]
that abstracts the main concepts of an SOA service. Another MOF
metamodel is provided for RESTful web services. Finally, a third
metamodel that characterizes the Web Services Description Language
(WSDL) 1.1 [8] representation of SOAP web services is provided. Then
QVT (Query/View/Transformation) Relations transformation rules [9]
are defined with their origin in the WSDL and RESTful metamodels
andwith the SOA intermediatemetamodel as target, aswell as between
the SOA intermediate metamodel and the WSDL and RESTful

Computer Standards & Interfaces 48 (2016) 49–70

⁎ Corresponding author at: Dpto. Ingeniería del Software e Inteligencia Artificial,
Universidad Complutense de Madrid, C/ Profesor José García Santesmases, 9, 28040
Madrid, Spain.

E-mail addresses: anavarro@fdi.ucm.es (A. Navarro), adasilva@ucm.es (A. da Silva).

http://dx.doi.org/10.1016/j.csi.2016.03.004
0920-5489/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.03.004&domain=pdf
mailto:adasilva@ucm.es
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.03.004
www.elsevier.com/locate/csi


metamodels. Thus a conversion mechanism is formally defined. Fig. 1
describes our approach.

Using this approach, conversion frameworks can be defined for the
conversion between SOAP and RESTful services. In addition, the same
service can be published both as a SOAP or a RESTful service, depending
on client preferences. However, the approach obviates the services and
publication details specific to each platform and framework.

Regarding compatibility between RESTful and SOAP services, REST-
ful web services were originally intended for the management of
resources. Therefore, using HTTP methods the CRUD (Create, Read,
Update andDelete) operations performed on a resource could be imple-
mented: POST for create, GET for read, PUT for update, and DELETE for
delete. Thus, from this point of view the translation from RESTful
services to WSDL services is straightforward (it is only necessary to
provide CRUDmethods), but the opposite translationmay not be so eas-
ily implemented.

For example, we could have a WSDL web service for the manage-
ment of a cooling system. Thus, the service could have the following
operations: start, stop, standby, heat, cool. How can themanagement
of a cooling system be understood from a RESTful point of view? In
our opinion this answer can have, at least, two answers, depending
on the interpretation of RESTful services. If RESTful services are con-
sidered as a paradigm for entity (i.e. resource) management over the
Internet, there is no way to translate the WSDL web service for the
management of a cooling system. However, if RESTful services are
only considered as a way for sending information over the Internet
using HTTP methods, anything can be converted to a RESTful web
service. Thus, the web service for themanagement of the cooling sys-
tem could be implemented as a RESTful service. Only a servlet is
needed (supposing a Java-based implementation [10]). This servlet
receives a parameter in the request that identifies the operation to
be performed on the cooling system (e.g. 1 for start, 2 for stop, 3
for standby, 4 for heat and 5 for cool), as well as the parameters re-
quired for each operation (if needed). All this information can be
transmitted using the GET or the POST method, and the servlet is
only used as a Web Service Broker [11] that provides HTTP access
to a Java class. This paper follows the latter philosophy, like most En-
terprise Service Buses and SOA gateways that translate WSDL web
services into RESTful web services.

The contribution of the paper is twofold: formal metamodels for
REST andWSDL web services are defined, and a conversion mechanism
using an intermediate SOA metamodel and QVT transformation rules is
provided. In this way developers of the middleware responsible for the
translation between REST andWSDLweb services have a formal tool for
guiding its process. Thus, for example, as illustrated in Section 7,

platform-independent test cases can be defined using the approach pre-
sented in this paper.

This paper gives the technical details of ourwork. Section 2 provides
a brief introduction toMOF and QVT standards. Section 3 analyses relat-
ed work. Section 4 describes the SOA metamodel. Section 5 describes
the RESTful metamodel and the conversion rules between SOA and
RESTful metamodels. Section 6 describes the WSDL metamodel and
the conversion rules between the SOA and SOAP metamodels.
Section 7 provides two real-life cases. Finally, Section 8 presents conclu-
sions and future work.

2. MOF and QVT standards

2.1. MOF standard

OMG Meta-Object Facility, MOF, is a language intended for the
definition of metamodels [7]. As their name depicts, metamodels are
models of models, and they are necessary for defining models such as
UML or the Entity-Relationship (ER) models. OMG defines a four layer
hierarchy for dealing with the concepts related to metamodeling [12],
but the people that make these models usually work in the M1 model-
ing layer. Within it lie the UMLmodels that we build in order to charac-
terize the design of software applications, or the ER models for the
database schemas that we use. The UML models and the ER models
are built according to a set of rules. For example, functions can be in-
cluded in UML classes, but they cannot be included in ER entities.
Why? Because the UML metamodel allows this feature, while the ER
metamodel does not allow it. We are used to learn UML and ER
metamodels using books or manuals, but a more formal method is
needed to comprehensibly define them (and to be able to use them in
transformations). MOF metamodels are used to characterize UML, ER
or any other formalisms that need to be characterized. Thus, the M2
layer appears, withinwhich themetamodels lie. But now, another ques-
tion arises: how are metamodels in the M2 layer characterized? We
could use natural language, but this is not a very formal method. We
still need a higher layer that allows us to describe metamodels in the
M2 layer. Thus, the M3 layer provides a formal way of defining
metamodels, and the elements that lie within it are the meta-
metamodels. Finally, in the M0 layer we have the instances of the M1
models.

Is another M4 layer necessary to characterize M3 meta-
metamodels? And an M5 layer for characterizing M4 elements, and so
on? The answer is no, because the meta-metamodels that lie within
the M3 layer are usually reflective and they are able to describe
themselves.

Fig. 1. The conversion mechanism provided in our approach.

50 A. Navarro, A. da Silva / Computer Standards & Interfaces 48 (2016) 49–70



Download English Version:

https://daneshyari.com/en/article/454000

Download Persian Version:

https://daneshyari.com/article/454000

Daneshyari.com

https://daneshyari.com/en/article/454000
https://daneshyari.com/article/454000
https://daneshyari.com

