
Standards-based metamodel for the management of goals, risks and
evidences in critical systems development

Xabier Larrucea a,⁎, Cesar Gonzalez-Perez b, Tom McBride c, Brian Henderson-Sellers 1

a Tecnalia Research & Innovation, Parque Tecnológico de Zamudio, Ibaizabal Bidea, edificio 202, 48170 Zamudio, Bizkaia, Spain
b Institute of Heritage Sciences (Incipit), Spanish National Research Council (CSIC), San Roque, 2, 15704 Santiago de Compostela, Spain
c Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 January 2016
Received in revised form 11 April 2016
Accepted 24 April 2016
Available online 26 April 2016

Safety critical system development includes a wide set of techniques, methods and tools for assuring system safety.
The concept of evidence is one of the key notions used to provide safety confidence to stakeholders. Safety goals
must be identified during safety analysis. In addition, risks should also be considered and managed, and linked to
the achievement of safety goals. This paper proposes an extension of the ISO/IEC 24744metamodel for development
methodologies in order to integrate themanagement of goals, risks and evidence into systemdevelopment lifecycles
in an ISO/IEC 15026-compliantmanner that is related to the approach of assurance cases. The proposed extension is
illustrated through a real-life scenario in the automotive domain where the system being developed must comply
with ISO 26262, a standard in this domain. By using the proposed approach, the management of goals, risks and
evidence in critical systems development is formalized and harmonized with different ISO/IEC standards, resulting
in a more robust and systematic treatment of these crucial aspects.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
ISO/IEC 24744
ISO/IEC 15026
ISO 26262

1. Introduction

Nowadays, software systems have an increasingly relevant role in
safety critical scenarios [1], with most of these systems depending on
the careful engineering of its software elements [2,3]. A widely adopted
approach to ensure that a software-intensive system is safe is to seek
evidence that demonstrates that the system, as awhole, reaches a specific
confidence in terms of safety [4]. In this regard, safety analysis is crucial
as part of requirements analysis [3] in order to identify safety goals and
understand the risks and hazards involved [5].

Safety analysis, usually linked to the strategic, functional and non-
functional goals of the system, is performed by considering the relevant
evidence [6] that may or may not support each goal. Proving the very
functionality of the system is often evidence-based [7,8], and industrial
experiences such as [7] highlight the relevance of evidence indicating
that “Product-based evidence should show that the system has the required
safe behaviour.” Hence, evidence constitutes the cornerstone to show
that a system conforms to a particular standard [4]; this is the case of
the automotive industry where software plays an increasingly

important role in subsystems such as braking, parking assistance or
fuel level estimation. Indeed, ISO 26262 [9] was released in 2011 to
cover a complete safety-driven development life cycle for road vehicle
construction. This standard comprises 10 parts covering systems and
software development; part 9, specifically, defines the objectives of
safety analysis, which aims to minimize “the consequences of faults and
failures on the functions, behaviour and design of items, and elements” and
contributes to the “identification of new functional or non-functional
hazards not previously considered during hazard analysis and risk assess-
ment” [9]. In fact, hazard analysis and risk assessment methods are used
to identify and categorize hazardous events and specify safety goals
[10]. Safety goals, in turn, are usually characterized in standards such as
ISO 26262. Safety and risk analysis, goals and evidence are also used in
domains other than automotive such as aerospace [11,12]. ISO/IEC
15026 [13] is concerned with software and systems assurance generally,
taking an approach that assurance is provided through a claim that has
been or will be achieved with some level of certainty based on evidence.
Part 4 of ISO/IEC 15026 defines a systems assurance process view for
which the purpose is “to achieve the assurance claims regarding the
system properties selected for special attention and to provide a body of
information showing the achievement of those claims.” The systems
assurance viewadds some requirements to existing systems and software
development processes to ensure that some specific activities are per-
formed and relevant evidence ismade available. Finally, it is worth saying
that, as stated in [5], safety-related activities such as those described here
are part of project management, and therefore we argue that these

Computer Standards & Interfaces 48 (2016) 71–79

⁎ Corresponding author.
E-mail addresses: xabier.larrucea@tecnalia.com (X. Larrucea),

cesar.gonzalez-perez@incipit.csic.es (C. Gonzalez-Perez), Tom.McBride@uts.edu.au
(T. McBride), brianhs@me.com (B. Henderson-Sellers).

1 Retired.

http://dx.doi.org/10.1016/j.csi.2016.04.004
0920-5489/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.04.004&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.04.004
mailto:Tom.McBride@uts.edu.au
mailto:brianhs@me.com
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.04.004
Unlabelled image
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi


activities should not be considered in isolation but in close connection to
other project management and technical activities.

Also in the same context, assessment [2] and certification [14] activi-
ties of safety critical systems not only provide a means to demonstrate
that a system is compliant with a set of standards [4], but also confer a
certain degree of confidence to stakeholders. This has been shown to be
the case, in particular, for the aviation [15] and automotive [16] domains;
in the latter, the term “assessment” is preferred instead of “certification”
with the samemeaning.We also note that a domain-specific Automotive
SPICE [17] has been developed. Thus, assessments as defined by ISO/IEC
15504 (i.e. SPICE) [18] have been used in these safety contexts but incor-
porating domain-specific variations [19]. More recently, technical report
ISO/IEC TR 33014 [20] provides a guide for process improvement, and
mentions objective evidence as result of the implementation of processes,
goals as part of the different levels defined in this technical report and
risks associated with the application of processes.

It is therefore clear, from the abundant literature, that evidence, goals
and risks are three major concepts that need to be considered in safety
critical software-intensive system development, regardless of the
specific domain or standards being adopted. In this regard, it would be
desirable that a common understanding be reached about what these
central concepts mean, how they relate to each other and to other
concepts, and how they can be applied to specific domains in order to
comply with specific standards. The problem of “harmonization plus
refinement” has been already raised [21], and a tentative solution
proposed [22] that allows for the creation of an abstract ontology that
is refined in a per-domain and per-standard basis. Currently, efforts
are being carried out within a special working group of ISO/IEC JTC1
SC7where two of the authors are the co-chairs of this group, to develop
an ontological infrastructure for the whole SC7, organized as follows. At
the most abstract level, a Definitional Elements Ontology (DEO) will
contain a minimal set of core and abstract concepts that are common
to all the relevant domains and situations. From this DEO, a number of
Configured Definitional Ontologies (CDOs) can be obtained; these are
specific configurations of the DEO, e.g. by adding specialized concepts
or removing unwanted ones. Finally, Standard Domain Ontologies
(SDOs) can be created by instantiating the CDOs; an SDO usually
constitutes a specific standard or domain- and situation-specific
approach. Although this work is being carried out within ISO/IEC
JTC1 SC7, the general approach of the solution is not tied to any
particular domain, and we propose here to adopt it for the definition
and further refinement of the above identified core concepts of evidence,
goal and risk.

Preliminary results of the SC7 ontologyworking group show that the
major inputs for said ontology will be ISO/IEC 24744 [23] and ISO/IEC/
IEEE 24765 (SEVOCAB) [24]. Neither of these includes concepts such
as evidence, goal and risk; this means that these concepts would need
to be incorporated into the DEO, in one form or another, if they were
to be used in software development efforts. For this reason, we propose
in this paper an extension to ISO/IEC 24744 that incorporates the neces-
sary constructs to incorporate evidence, goals and risks into any software
development effort, and to do this in a fashion that is integrated with
other aspects of the development endeavour. Also, this extension is
proposed in away such that it could be easily adopted as part of the future
SC7 DEO and refined as needed into CDOs and SDOs for e.g. the automo-
tive domain through ISO 26262.

The remainder of this paper is structured as follows. Section 2 pro-
vides some background on the ISO/IEC 24744 international standard,
which is adopted as a conceptual framework for our work, as well as
previous works on goals, risks and evidence. Section 3 describes the
proposed solution, namely a detailed specification of the ISO/IEC
24744 extension for evidence, goals and risks. Section 4 validates this
solution by constructing first a sample CDO for the automotive domain,
then instantiating this CDO into a subset of ISO 26262, and then sim-
ulating a safety assessment process on top of a trace of the resulting
SDO. Finally, Section 5 presents a discussion of the benefits of the

proposed approach as well as its limitations, and suggests some future
improvements.

2. Background

2.1. Standards

2.1.1. ISO/IEC 24744
ISO/IEC 24744 “Software Engineering—Metamodel for Development

Methodologies” [23] is an international standard created from the
software and systems engineering fields. It includes a UML-expressed
metamodel that defines the following key concepts as part of any
methodology:

• Work units. “Awork unit is a job performed, or intended to be performed,
within an endeavour” [23]. There are different types of work units:
processes (large-grained work units that operate within a given area of
expertise [23], such as “Quality Assurance” or “Requirements Engi-
neering”), tasks (small-grained work units that focus on what must be
done in order to achieve a given purpose [23], such as “Prepare unit
tests” or “Validate requirements against stakeholders”), and tech-
niques (small-grained work units that focus on how the given purpose
may be achieved [23], such as “CRC Cards”, or “Focus Groups”).

• Work products. A work product is a thing of interest for the endeavour,
either because it is used as an input to the process (such as a bid
document), or because it is created as an interim or final result
(such as a requirements specification or the software itself). There
are different types of work products, the most relevant ones being
documents (durable depictions of a fragment of reality [23]) and
models (abstract representations of some subject that acts as the
subject's surrogate for some well-defined purpose [23]).

• Producers. A producer is an agent that has the responsibility to
execute work units [23]. There are different types of producers, the
major ones being people (individual human beings involved in the
endeavour [23]); teams (organized sets of producers that collectively
focus on common work units [23], such as “the quality assurance
team”); and tools (instruments that help other producers to execute their
responsibilities in an automated way [23], such as “the bug-tracking
system”).

• Stages. A stage is amanaged time frame within an endeavour [23]. Work
units only specify what is supposed to be done, but they do not say
when; stages, on the contrary, establish the temporal framework for
work units. There are different types of stages, the most relevant ones
being phases (managed intervals of time during which the endeavour
changes levels of abstraction, such as “Inception”, “Development” or
“Maintenance”); and milestones (managed points in time that mark a
significant event within the endeavour [23], such as “Visual Freeze” or
“Requirements Signed Off”).

Also, ISO/IEC 24744 defines the concept of action as the mechanism
by which tasks cause effects on work products, and that these effects
may be of several types: create, modify, read only or delete.

Finally, it is worth mentioning that ISO/IEC 24744 departs from
the usual OMG-centric “strict metamodelling” approach and instead
employs a more powerful architecture based on powertypes to rep-
resent both the methodology and the enacted endeavour at the
same time within a single metamodel [25,26]. By using this ap-
proach, extension guidelines are provided as part of the standard
so that customized variants can be constructed by combining regular
object-oriented specialization and instantiation of classes in the
metamodel [27].

It is beyond the scope of this paper tomake a complete description of
ISO/IEC 24744; please see [23] for additional information.

72 X. Larrucea et al. / Computer Standards & Interfaces 48 (2016) 71–79



Download English Version:

https://daneshyari.com/en/article/454001

Download Persian Version:

https://daneshyari.com/article/454001

Daneshyari.com

https://daneshyari.com/en/article/454001
https://daneshyari.com/article/454001
https://daneshyari.com

