
Design and implementation of split/merge operations for efficient
multimedia file manipulation

Youngmin Kim a, Youngjoo Woo b, Hyeonsu Lee b, Euiseong Seo b,⁎
a Division of IT and Mobile Communication Business, Samsung Electronics, Suwon, Republic of Korea
b College of ICE, Sungkyunkwan University, Suwon, Republic of Korea

a b s t r a c ta r t i c l e i n f o

Article history:
Received 22 December 2015
Received in revised form 6 April 2016
Accepted 26 April 2016
Available online 10 May 2016

Various kinds of smart devices, including personal video recorders, smart TVs, smart phones, and digital cameras
frequentlymanipulatemultimedia files, such as frame trimming or inserting. However, because the standard file
systemAPIs do not provide appropriate operations formultimediafile editing, application developers have to im-
plement editing operations by using the conventional read and write operations. Therefore, editing multimedia
files unnecessarily incur a large number of I/O operations, resulting in significant performance drawbacks. This
paper proposes the design of two novel file system operations, split() and merge(), to remedy the performance
overhead of manipulating multimedia files. Unlike conventional file system operations, these operations are car-
ried out only at themetadata level and are accompanied byno actual datamovement, so they take negligible time
to finish regardless of file size. In addition to the design proposal, this paper introduces the implementation de-
tails of the proposed design for three representative file systems: Ext4, FAT32, and exFAT. The evaluation with a
commercial digital camera showed that the movie file trimming took less than 1 s for most cases, which is well
over 1000% improvement over the conventional approach. In addition, the number of I/O operations, which sig-
nificantly affects the lifespan of flash memory storage components, was suppressed to less than 1% of that with
the conventional approach.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
File systems
Multimedia editing
Non-linear editing
Flash memory
Ext4
FAT

1. Introduction

Due to the ever-growing popularity of multimedia sharing over the
Internet and social network services, users of smart consumer electron-
ics, including smart TVs, smart cameras, personal video recorders, and
smart phones are frequently recording, editing and sharing multimedia
files, such as videos,music, and voice recordings via diverse Internet and
social networking services. In addition,multimedia file storage via cloud
systems has proliferated across the market. These services usually limit
the length or size of the multimedia files that can be uploaded. There-
fore, trimming unnecessary parts of multimedia files is necessary [1].
In addition, easy-to-use multimedia authoring tools, which can insert
a video clip in themiddle of another clip or concatenate twomultimedia
files, enable non-professional users to create diversemultimedia works.

Because the conventional file system operation set does not provide
file operations that can insert data in the middle of an existing file or
remove part of an existing file, such multimedia file manipulation has
been implemented by using read andwrite operations only. For example,
to trim an unnecessary video fragment, an application copies the neces-
sary part to a newmoviefile and then deletes or backs up the original file.

This approach requires a large number of read and write operations
and themovement of huge volumes of data considering the large size of
multimedia files in general. Consequently, this prolongs the response
time and degrades the user experience. In addition, thewrite amplifica-
tion from copying the existing data blocks significantly degrades the
lifespan of the flash memory inside the embedded storage systems
due to its limited program count [2]. Last but not least, this copy opera-
tion demands additional storage capacity to accommodate the new
multimedia file and original file simultaneously. Therefore, the file ma-
nipulation will fail if the amount of free storage space is insufficient.

Diverse approaches have been proposed to deal with the aforemen-
tioned inefficiency for PCs or server systems, and most of them depend
on extra metadata structures. However, they are not feasible for con-
sumer electronics because the edited files can be spontaneously trans-
ferred to the other devices via memory cards or USB connections, and
the extra information required to access the edited files will spoil the
compatibility with the other devices.

To resolve this issue, this paper proposes two novel primitive file-
manipulating operations: split and merge. As their names imply, the
merge operation concatenates two existing files to merge them into a
single file, and the split operation separates an existing file into two
smaller files. These operations are conducted by modifying the file sys-
temsmetadata structure, which takes a negligible amount of time. Thus,
neither operation produces a copy nor move operation over the data

Computer Standards & Interfaces 48 (2016) 80–89

⁎ Corresponding author.
E-mail addresses: ymkim74@gmail.com (Y. Kim), mongmio@skku.edu (Y. Woo),

hyunsu@skku.edu (H. Lee), euiseong@skku.edu (E. Seo).

http://dx.doi.org/10.1016/j.csi.2016.04.005
0920-5489/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.04.005&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.04.005
mailto:euiseong@skku.edu
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.04.005
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi


blocks. Consequently, both operations require the similar amount of
time to complete regardless of the size of the target files.

A multimedia file generally consists of a small metadata section and
a large frame data section. Because split and merge are generic file sys-
temoperations and are not aware of themultimediafile structure,when
two multimedia files are merged, the metadata sections of the two files
must be split first and then unified tomake a singlemetadata section for
thefinal product. The samemechanism applies to thedata sections. Nat-
urally, some parts of the metadata sections must be updated to reflect
the changes. In this manner, two multimedia files can be combined by
a few invocations of the split andmerge system calls. Similarly, a multi-
media file can be separated easily and efficiently into two independent
files by using the proposed operations. These schemes can be used as
basic building blocks for more complex multimedia file editing opera-
tions, such as trimming or insertion, and require no additional storage
space to temporally maintain the partial replication of the original file.

In addition to the performance benefit, the proposed operations will
significantly extend the lifespan of the embedded storage system; be-
cause they reduce the number of write operations by a significant mar-
gin due to the data block copy operations. The proposed operations are
implemented for the Ext4, FAT32 and exFAT file systems of the Linux
kernel, which are popular file systems for embedded systems and PCs.
The virtual file system, which links the user-level application program-
ming interfaces (APIs) and the underlying file systems, is modified to
provide transparent support of the proposed operations. Due to this
modification, a user-level process can use the proposed operations by
simply calling the split andmerge systems calls regardless of the under-
lying file system. This implementation is ported to a commercial smart
camera for evaluation.

The remainder of this paper is organized as follows. Section 2 intro-
duces themotivation behind the split/merge operations as well as relat-
ed work. Section 3 proposes the design principles of the proposed
operations. The interface and implementation of the proposed file sys-
tem are illustrated in Section 4, and the evaluation of the prototype im-
plementation is presented in Section 5. Section 6 concludes the research.

2. Background and related work

2.1. Motivation

Fig. 1 illustrates the conventional trimming scheme for MP4 movie
files. The trimmed media file is actually a newly created file, and the

frame data of the trimmed media file are replications of the original
frame data.

Likemany othermultimedia codecs, theMP4 specification requires a
file to have its type header at the beginning. The type header points to
metadata about the files video frames. Usually, themetadata are located
at the end of the file. Both header and metadata must reflect the con-
tents of themovie file. Therefore, after creation of the new file, the trim-
ming scheme updates the type header, copies the select frame data, and
then appends the updated metadata. The sizes of the type header and
metadata are negligible compared to the frame data. Therefore, thema-
jority of the processing time is taken up by the frame copy operation, al-
though the frame data are already stored in the file system, and there is
no need to make a redundant copy of them.

To examine the impact of the copy operation, the time to finish the
trimming operation was measured. The original file used in this exam-
ple was 640MB and 5min in length. This experiment changed the trim-
ming range from 10 s to 50 s by a 10 s step. In each experiment, the
overall response time, number of I/O requests, I/O wait time, and CPU
utilization under three different file systems: Ext4, FAT32, and exFAT,
were recorded. The details of the experimental configurations are de-
scribed in Section 5.

As shown in Fig. 2, the response time increased proportional to the
selection length, because the longer the selected movie is the more
data frame copies occur. Under all three file systems, it took longer
than 10 s, which is an unacceptable time for consumer electronics cus-
tomers to extract a 50 s file. Consequently, the number of I/O requests
also increased proportionally to the trimmed file size, as shown in
Fig. 3. Even though a significantly long time was required to finish, the
actual CPU utilization during the operations was maintained under
15%. This is because most of the CPU time was spent waiting for I/O
operations.

The slow response time from the copy-based approach is not just
problematic for trimming operations. It applies to multimedia file
editing operations in general. For example, injecting a 2 s movie frag-
ment into the beginning of an existing 5 minMP4 file, which is approx-
imately 640 MB, took up to 78 s, according to the experimental results.

2.2. Background

File systems generally group consecutive sectors to form a logical
block unit on the storage device [3,4]. This logical block is the smallest
data unit that can be allocated for a file.

Fig. 1. Conventional copy-based trimming scheme of MP4 files.

81Y. Kim et al. / Computer Standards & Interfaces 48 (2016) 80–89



Download English Version:

https://daneshyari.com/en/article/454002

Download Persian Version:

https://daneshyari.com/article/454002

Daneshyari.com

https://daneshyari.com/en/article/454002
https://daneshyari.com/article/454002
https://daneshyari.com

